2017
Posterior dopamine D2/3 receptors and brain network functional connectivity
Nagano‐Saito A, Lissemore J, Gravel P, Leyton M, Carbonell F, Benkelfat C. Posterior dopamine D2/3 receptors and brain network functional connectivity. Synapse 2017, 71 PMID: 28700819, DOI: 10.1002/syn.21993.Peer-Reviewed Original ResearchConceptsDefault mode networkNetwork functional connectivityFunctional connectivity strengthPositron emission tomographyFunctional connectivityPosterior portionReceptor distributionPosteromedial cortexResting-state functional magnetic resonance imagingConnectivity strengthBrain network functional connectivityPosterior default mode networkMode networkDopamine D2/3 receptorsDopamine receptor distributionResting-state connectivityBrain networksFunctional magnetic resonance imagingMagnetic resonance imagingMultiple brain networksFallypride bindingDorsal attention networkMean BPBrain dopamineD2/3 receptors
2014
Adenosine 2A Receptor Occupancy by Tozadenant and Preladenant in Rhesus Monkeys
Barret O, Hannestad J, Alagille D, Vala C, Tavares A, Papin C, Morley T, Fowles K, Lee H, Seibyl J, Tytgat D, Laruelle M, Tamagnan G. Adenosine 2A Receptor Occupancy by Tozadenant and Preladenant in Rhesus Monkeys. Journal Of Nuclear Medicine 2014, 55: 1712-1718. PMID: 25082853, DOI: 10.2967/jnumed.114.142067.Peer-Reviewed Original ResearchConceptsParkinson's diseaseReceptor occupancyNonhuman primatesPhase 2 clinical trialPET radiotracersRadiation dosimetry estimatesDose-dependent blockingAdult rhesus macaquesAdenosine 2A receptorMotor symptomsSubstantia nigraPlasma levelsClinical trialsHuman pharmacokinetic parametersMotor functionDopamine inputPharmacokinetic parametersReceptor distributionRegional uptakeTozadenantReceptor functionRhesus monkeysWhole-body PET imagesDosimetry estimatesPharmacokinetic modeling
1995
Vasoactive intestinal polypeptide and its receptor changes in human temporal lobe epilepsy
de Lanerolle NC, Gunel M, Sundaresan S, Shen MY, Brines ML, Spencer DD. Vasoactive intestinal polypeptide and its receptor changes in human temporal lobe epilepsy. Brain Research 1995, 686: 182-193. PMID: 7583284, DOI: 10.1016/0006-8993(95)00365-w.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyTemporal lobe lesionsLobe epilepsySeizure focusLobe lesionsCA fieldsReceptor distributionHuman hippocampusHuman temporal lobe epilepsyIntractable temporal lobe epilepsyHippocampal seizure focusHippocampal neuronal lossVasoactive intestinal polypeptideDentate molecular layerAutopsy hippocampiVIP immunoreactivityNeuronal lossIntestinal polypeptidePatient groupReceptor autoradiographyReceptor changesTLE patientsIntestinal peptideNeuronal numberAmmon's horn
1989
Quantitative autoradiographic mapping of serotonin 5‐HT1 and 5‐HT2 receptors and uptake sites in the neocortex of the rhesus monkey
Lidow M, Goldman‐Rakic P, Gallager D, Rakic P. Quantitative autoradiographic mapping of serotonin 5‐HT1 and 5‐HT2 receptors and uptake sites in the neocortex of the rhesus monkey. The Journal Of Comparative Neurology 1989, 280: 27-42. PMID: 2918094, DOI: 10.1002/cne.902800104.Peer-Reviewed Original ResearchConceptsLayer IIIReceptor subtypesUptake sitesCortical areasVisual cortexLayer IRhesus monkeysPrimary motor cortexSerotonin uptake sitesQuantitative autoradiographic mappingMonkey cerebral cortexDistribution of serotoninPrimary visual cortexPattern of distributionIVC betaAutoradiographic mappingCerebral cortexMotor cortexLayer IVCortical functionOccipital lobePrimary motorPrestriate cortexReceptor distributionCortex
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply