Lauren Lawres, MSPH
Research Associate 1About
Titles
Research Associate 1
Education & Training
- MSPH
- Tulane University, Tropical Medicine (2013)
- BS
- University of South Florida, Health Sciences, Public Health (2011)
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Lauren Lawres's published research.
Publications Timeline
A big-picture view of Lauren Lawres's research output by year.
Choukri Ben Mamoun, PhD
Mandar Deepak Muzumdar, MD
Alexia Belperron, PhD
James Knight, PhD
Jeremy B. Jacox, MD, PhD
Peter James Krause, MD
15Publications
584Citations
Publications
2023
Decoding the obesity–cancer connection: lessons from preclinical models of pancreatic adenocarcinoma
Ruiz C, Garcia C, Jacox J, Lawres L, Muzumdar M. Decoding the obesity–cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Science Alliance 2023, 6: e202302228. PMID: 37648285, PMCID: PMC10474221, DOI: 10.26508/lsa.202302228.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsPancreatic adenocarcinomaPreclinical modelsObesity-cancer connectionObesity-associated cancersMicrobial dysbiosisHormone dysregulationEarly progressionRisk factorsWorldwide prevalencePancreatic tumorigenesisObesityPreclinical modelingCancer typesCancer developmentTumor cellsAdenocarcinomaTumor initiationCancerMetabolic stateCellular metabolismNovel strategyDysbiosisInflammationTherapyPrevalence
2021
Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection
Oliva Chávez AS, Wang X, Marnin L, Archer NK, Hammond HL, Carroll EEM, Shaw DK, Tully BG, Buskirk AD, Ford SL, Butler LR, Shahi P, Morozova K, Clement CC, Lawres L, Neal A, Mamoun CB, Mason KL, Hobbs BE, Scoles GA, Barry EM, Sonenshine DE, Pal U, Valenzuela JG, Sztein MB, Pasetti MF, Levin ML, Kotsyfakis M, Jay SM, Huntley JF, Miller LS, Santambrogio L, Pedra JHF. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nature Communications 2021, 12: 3696. PMID: 34140472, PMCID: PMC8211691, DOI: 10.1038/s41467-021-23900-8.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAnaplasma phagocytophilumAnimalsArthropodsBacterial InfectionsCell LineDermacentorExtracellular VesiclesFrancisella tularensisGene OntologyHumansInflammationIntravital MicroscopyIxodesMaleMiceMice, Inbred C57BLMice, KnockoutMicroscopy, Electron, TransmissionProteomicsR-SNARE ProteinsSkinT-LymphocytesTandem Mass SpectrometryTicksVesicle-Associated Membrane Protein 2ConceptsExtracellular vesiclesBiology of arthropodsSynaptobrevin 2Pathogen Francisella tularensisMammalian hostsArthropodsVector feedingDistinct outcomesPathogen transmissionVesiclesMicrobial spreadingVector-borne diseasesFrancisella tularensisBacterial infectionsTicks DermacentorIxodes scapularisAnaplasma phagocytophilumBiologySkin immunitySnareDendritic epidermal T cellsPathogensHostT cellsTularensis
2020
Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic Ductal Adenocarcinoma
Chung KM, Singh J, Lawres L, Dorans KJ, Garcia C, Burkhardt DB, Robbins R, Bhutkar A, Cardone R, Zhao X, Babic A, Vayrynen SA, Dias Costa A, Nowak JA, Chang DT, Dunne RF, Hezel AF, Koong AC, Wilhelm JJ, Bellin MD, Nylander V, Gloyn AL, McCarthy MI, Kibbey RG, Krishnaswamy S, Wolpin BM, Jacks T, Fuchs CS, Muzumdar MD. Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cell 2020, 181: 832-847.e18. PMID: 32304665, PMCID: PMC7266008, DOI: 10.1016/j.cell.2020.03.062.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAnimalsCarcinogenesisCarcinoma, Pancreatic DuctalCell LineCell Line, TumorCell Transformation, NeoplasticDisease Models, AnimalDisease ProgressionEndocrine CellsExocrine GlandsFemaleGene Expression Regulation, NeoplasticHumansMaleMiceMice, Inbred C57BLMutationObesityPancreatic NeoplasmsSignal TransductionTumor MicroenvironmentConceptsPancreatic ductal adenocarcinomaPDAC progressionDuctal adenocarcinomaMajor modifiable risk factorModifiable risk factorsBeta cell expressionObesity-associated changesAutochthonous mouse modelPancreatic ductal tumorigenesisDriver gene mutationsPeptide hormone cholecystokininRisk factorsPDAC developmentMouse modelObesityHormone cholecystokininOncogenic KrasCell expressionTumor microenvironmentDietary inductionCancer developmentGene mutationsReversible roleMurine samplesProgression
2019
Evidence for vesicle-mediated antigen export by the human pathogen Babesia microti
Thekkiniath J, Kilian N, Lawres L, Gewirtz MA, Graham MM, Liu X, Ledizet M, Mamoun C. Evidence for vesicle-mediated antigen export by the human pathogen Babesia microti. Life Science Alliance 2019, 2: e201900382. PMID: 31196872, PMCID: PMC6572159, DOI: 10.26508/lsa.201900382.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsApicomplexan parasitesCell fractionation studiesImmunoelectron microscopy analysisMode of secretionInvasion of erythrocytesParasite effectorsTrafficking motifsPlasma membraneExport mechanismClose relativesParasitophorous vacuoleHost erythrocyteMorphogenic changesFractionation studiesNovel mechanismHuman malariaFatal tick-borne diseaseMalaria-like illnessMouse red blood cellsParasitesAntigen exportTick-borne diseaseRed blood cellsHuman babesiosisImmunodominant antigensParasite‐Derived Vesicular‐Mediated Protein Export by the Human Pathogen Babesia microti
Mamoun C, Thekkiniath J, Kilian N, Lawres L, Gewirtz M, Abraham A, Graham M, Liu X, Ledizet M. Parasite‐Derived Vesicular‐Mediated Protein Export by the Human Pathogen Babesia microti. The FASEB Journal 2019, 33: 649.2-649.2. DOI: 10.1096/fasebj.2019.33.1_supplement.649.2.Peer-Reviewed Original ResearchCitationsConceptsMajor morphogenetic changesImmunoelectron microscopy analysisB. microtiProtein exportPhylum ApicomplexaMorphogenetic changesSecreted proteinsCell fractionationIntraerythrocytic developmentCanonical motifsExport systemPlasma membraneErythrocyte cytoplasmMajor immunodominant antigenBabesia microtiParasitophorous vacuoleHost erythrocyteWorldwide geographic distributionMalaria-like illnessGeographic distributionMalaria parasitesCell environmentProteinFASEB JournalFull-text articlesComparative 3D genome organization in apicomplexan parasites
Bunnik EM, Venkat A, Shao J, McGovern KE, Batugedara G, Worth D, Prudhomme J, Lapp SA, Andolina C, Ross LS, Lawres L, Brady D, Sinnis P, Nosten F, Fidock DA, Wilson EH, Tewari R, Galinski MR, Ben Mamoun C, Ay F, Le Roch KG. Comparative 3D genome organization in apicomplexan parasites. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 3183-3192. PMID: 30723152, PMCID: PMC6386730, DOI: 10.1073/pnas.1810815116.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsGenome organizationGene expressionApicomplexan parasitesVirulence genesSpatial genome organizationPositioning of chromosomesRelated apicomplexan parasitesVirulence gene clusterClustering of centromeresHi-C experimentsStrong repressive effectHuman malaria parasiteChromosome foldingEukaryotic cellsGene familyGene clusterGenome modelGenomeGene clusteringMore virulent pathogensNuclear spaceRepressive effectGenesAntigenic variationVirulent pathogens
2018
Establishment of a continuous in vitro culture of Babesia duncani in human erythrocytes reveals unusually high tolerance to recommended therapies
Abraham A, Brasov I, Thekkiniath J, Kilian N, Lawres L, Gao R, DeBus K, He L, Yu X, Zhu G, Graham MM, Liu X, Molestina R, Ben Mamoun C. Establishment of a continuous in vitro culture of Babesia duncani in human erythrocytes reveals unusually high tolerance to recommended therapies. Journal Of Biological Chemistry 2018, 293: 19974-19981. PMID: 30463941, PMCID: PMC6311517, DOI: 10.1074/jbc.ac118.005771.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsHuman babesiosisBetter therapeutic strategiesHigher parasite burdenTick-borne diseaseFulminant infectionRed blood cellsTherapeutic strategiesHuman erythrocytesParasite burdenClinical casesSevere pathologyHuman red blood cellsNew disease modelsBlood cellsDisease modelsInfectionDiseaseBabesiosisDeathRelevant model systemParasitesApicomplexan parasitesDaughter parasitesErythrocytesFurther researchBmGPAC, an Antigen Capture Assay for Detection of Active Babesia microti Infection
Thekkiniath J, Mootien S, Lawres L, Perrin BA, Gewirtz M, Krause PJ, Williams S, Doggett J, Ledizet M, Mamoun C. BmGPAC, an Antigen Capture Assay for Detection of Active Babesia microti Infection. Journal Of Clinical Microbiology 2018, 56: 10.1128/jcm.00067-18. PMID: 30093394, PMCID: PMC6156295, DOI: 10.1128/jcm.00067-18.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsHuman babesiosisBabesia microti infectionCapture enzyme-linked immunosorbent assayAntigen capture enzyme-linked immunosorbent assayAntigen capture assayEnzyme-linked immunosorbent assayZoonotic infectious diseaseAcute infectionBlood transfusionAsymptomatic infectionMicroti infectionReal-time PCRBlood supplyAnimal reservoir hostsDonor bloodEpidemiological surveyHuman patientsImmune systemSerological assaysImmunodominant antigensInfectionInfectious diseasesIntraerythrocytic protozoan parasitePatientsImmunosorbent assayInsights into the evolution and drug susceptibility of Babesia duncani from the sequence of its mitochondrial and apicoplast genomes
Virji AZ, Thekkiniath J, Ma W, Lawres L, Knight J, Swei A, Roch KL, Mamoun C. Insights into the evolution and drug susceptibility of Babesia duncani from the sequence of its mitochondrial and apicoplast genomes. International Journal For Parasitology 2018, 49: 105-113. PMID: 30176236, PMCID: PMC6395566, DOI: 10.1016/j.ijpara.2018.05.008.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMitochondrial genomeApicoplast genomeB. duncaniCytochrome c oxidaseB. microtiOrganelle proteinsCircular moleculeApicomplexan parasitesPhylogenetic analysisNew lineageGene transcriptionCytochrome bGenomeC oxidaseI proteinPlasmodium sppProteinTheileria sppBabesia bovisKbParasite factorsCausative agentParasitesAnnotationSpp
2017
The antimalarial activity of the pantothenamide α-PanAm is via inhibition of pantothenate phosphorylation
Chiu JE, Thekkiniath J, Choi JY, Perrin BA, Lawres L, Plummer M, Virji AZ, Abraham A, Toh JY, Zandt MV, Aly ASI, Voelker DR, Mamoun CB. The antimalarial activity of the pantothenamide α-PanAm is via inhibition of pantothenate phosphorylation. Scientific Reports 2017, 7: 14234. PMID: 29079738, PMCID: PMC5660193, DOI: 10.1038/s41598-017-14074-9.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMode of actionBlood stage developmentPantothenate kinase activityYeast mutantsMass spectrometry analysisBlood-stage parasitesPA-dependent mannerKinase activityPantothenate phosphorylationCAB1Pantothenate kinaseStage parasitesYeast growthCoenzyme ABiochemical analysisBlood stagesDirect competitionPantothenic acidSpectrometry analysisResistant P. falciparum strainsPhosphorylationStage developmentPlasmodium falciparumCompetitive inhibitorP. berghei
News
News
- May 14, 2020Source: Cell
New Publication in Cell!
- June 19, 2019
How an Emerging Tick-borne Pathogen Evades Detection
- February 25, 2018
Welcome to Lauren Lawres!
- June 06, 2016
Combination therapy cures tick-borne illness in mice