Clifford Slayman, PhD
Professor Emeritus of Cellular And Molecular PhysiologyCards
Appointments
Contact Info
Cellular & Molecular Physiology
PO Box 208026, 333 Cedar Street
New Haven, CT 06520-8026
United States
About
Titles
Professor Emeritus of Cellular And Molecular Physiology
Biography
A long interest in the physical aspects of membrane transport processes—especially in phenomena related to charge transport—focuses now on proton “pumps,” proton-coupled cation transporters, and potassium channels in the plasma membranes of fungi, particularly Saccharomyces cerevisiae, Candida albicans (a pathogen), and Neurospora crassa. Structure-function analysis of proteins in these organisms is now possible, because of complete genome sequencing, and the laboratory is using site-directed mutagenesis and heterologous expression to analyze functional differences among analogous proteins in the three species. Novel and surprising properties have emerged, for example the development of enormous steady-state membrane voltages (exceeding 350 mV), mediation of active potassium transport by coupling to proton movements, and chloride channeling through potassium transporters. Also, a major current line of investigation is into the mechanisms by which small cationic peptides (so-called RAMPs) produced by a wide variety of plant and animal cells, become lethal to microorganisms, serving thereby as prototypes for new classes of therapeutic drugs. And finally, we have a new line, into the chemistry and morphogenetics of autophagy in fungi.
Appointments
Cellular & Molecular Physiology
EmeritusPrimary
Other Departments & Organizations
Education & Training
- PhD
- Rockefeller University (1963)
- AB
- Kenyon College (1958)
Research
Overview
Medical Research Interests
ORCID
0000-0002-3029-2054
Research at a Glance
Publications Timeline
Research Interests
Potassium Channels
Histatins
Publications
2024
Electrophysiology of fluoride channels in the yeasts Saccharomyces cerevisiae and Candida albicans
Rivetta A, Slayman C. Electrophysiology of fluoride channels in the yeasts Saccharomyces cerevisiae and Candida albicans. Methods In Enzymology 2024, 696: 3-24. PMID: 38658085, DOI: 10.1016/bs.mie.2024.01.005.Peer-Reviewed Original ResearchConceptsYeast Saccharomyces cerevisiaeOpportunistic human pathogenFree-living microorganismsSingle cellsPlasma membrane of single cellsYeast spheroplastsSaccharomyces cerevisiaeRegulation of moleculesCandida albicansHuman pathogensPlasma membraneCell wallExtracellular environmentMembrane of single cellsPatch-clamp techniqueOsmotic strengthYeastSpheroplastsCandidaFluoride channelsSmall cell volumeToxic moleculesCell membraneDiverse moleculesCell populations
2015
A structural model for facultative anion channels in an oligomeric membrane protein: the yeast TRK (K+) system
Pardo JP, González-Andrade M, Allen K, Kuroda T, Slayman CL, Rivetta A. A structural model for facultative anion channels in an oligomeric membrane protein: the yeast TRK (K+) system. Pflügers Archiv - European Journal Of Physiology 2015, 467: 2447-2460. PMID: 26100673, DOI: 10.1007/s00424-015-1712-6.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsTransmembrane helicesAnion channelTrk proteinNon-animal cellsOligomeric membrane proteinsAmphipathic transmembrane helicesLigand-gated anion channelsClass of proteinsTrk transportersRCK domainsBacterial membersRegulatory domainMembrane proteinsFungal proteinsTrk systemHydrophobic gatingPrimary sequenceMembrane voltageBiological membranesProteinCytoplasmic collarFunctional processesChloride effluxHelixPathwayYeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains*
Smith KD, Gordon PB, Rivetta A, Allen KE, Berbasova T, Slayman C, Strobel SA. Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains*. Journal Of Biological Chemistry 2015, 290: 19874-19887. PMID: 26055717, PMCID: PMC4528147, DOI: 10.1074/jbc.m115.651976.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAmino Acid SequenceCell MembraneConserved SequenceDrug Resistance, FungalEscherichia coliFluoridesGene ExpressionGene Expression Regulation, FungalGenome, FungalIon TransportMembrane ProteinsMolecular Sequence DataMutationPatch-Clamp TechniquesPhosphorylationPhylogenyProtein FoldingProtein MultimerizationProtein Structure, SecondaryProtein Structure, TertiaryRecombinant ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentStatic ElectricityConceptsC-terminal domainSaccharomyces cerevisiae functionsYeast plasma membraneN-terminal domainEffects of mutationsDuplicate proteinsYeast genomeCerevisiae functionsSequence conservationHelix domainLinker helixUbiquitous environmental toxinHomologous domainsImportant residuesFluoride channelsPlasma membraneParticular residuesBiological speciesSimilar mutationsIon channelsContinuous expressionProteinAntiparallel dimerMutationsResidues
2013
Coordination of K+ Transporters in Neurospora: TRK1 Is Scarce and Constitutive, while HAK1 Is Abundant and Highly Regulated
Rivetta A, Allen KE, Slayman CW, Slayman CL. Coordination of K+ Transporters in Neurospora: TRK1 Is Scarce and Constitutive, while HAK1 Is Abundant and Highly Regulated. MSphere 2013, 12: 684-696. PMID: 23475706, PMCID: PMC3647778, DOI: 10.1128/ec.00017-13.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsTransmembrane helicesCarbon starvationModel organism Neurospora crassaPotassium transportersNeurospora crassaClass proteinsQuantitative Western blottingATP hydrolysisPotassium limitationTRK1Molecular machinesHAK1Trk1pWestern blottingPotassium channelsCoexpressionStarvationTransportersHelixTransporter affinityElectrophysiological characterizationExpressionMM/hCrassaNeurospora
2011
Anion currents in yeast K+ transporters (TRK) characterize a structural homologue of ligand-gated ion channels
Rivetta A, Kuroda T, Slayman C. Anion currents in yeast K+ transporters (TRK) characterize a structural homologue of ligand-gated ion channels. Pflügers Archiv - European Journal Of Physiology 2011, 462: 315-330. PMID: 21556692, PMCID: PMC3151154, DOI: 10.1007/s00424-011-0959-9.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and Concepts
2009
Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on Candida albicans
Miranda M, Bashi E, Vylkova S, Edgerton M, Slayman C, Rivetta A. Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on Candida albicans. FEMS Yeast Research 2009, 9: 278-292. PMID: 19175416, DOI: 10.1111/j.1567-1364.2008.00471.x.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsMeSH KeywordsCandida albicansCation Transport ProteinsChloridesConserved SequenceFungal ProteinsModels, BiologicalModels, MolecularPhylogenyPolymorphism, Single NucleotidePotassiumProtein ConformationProtein Structure, TertiarySaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidConceptsPotassium transportersHuman pathogen Candida albicansTrk potassium transportersPathogen Candida albicansDetailed molecular investigationAnimal cellsSingle nucleotide polymorphismsDNA sequencesS. cerevisiaeComplete sequenceC. albicansTrk proteinSequence analysisCandida albicansInhibitor sensitivityFunctional comparisonNucleotide polymorphismsSelective drug actionMolecular investigationsAntimicrobial peptidesHomologuesPotential targetSecondary functionSalivary antimicrobial peptidesProtein
2005
Quantitative Modeling of Chloride Conductance in Yeast TRK Potassium Transporters
Rivetta A, Slayman C, Kuroda T. Quantitative Modeling of Chloride Conductance in Yeast TRK Potassium Transporters. Biophysical Journal 2005, 89: 2412-2426. PMID: 16040756, PMCID: PMC1366741, DOI: 10.1529/biophysj.105.066712.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsTrk proteinTrk potassium transportersPotassium transportersYeast spheroplastsPlasma membraneCentral poreNegative membrane voltagesProteinActive accumulationChloride conductanceChloride currentsMembrane dielectricMembrane voltageSaccharomycesSpheroplastsFungiPlantsTransportersBacteriaConductanceMembrane slope conductanceHypothetical structural modelStructural modelMembraneSlope conductance
2004
The TRK1 Potassium Transporter Is the Critical Effector for Killing of Candida albicans by the Cationic Protein, Histatin 5*
Baev D, Rivetta A, Vylkova S, Sun JN, Zeng GF, Slayman CL, Edgerton M. The TRK1 Potassium Transporter Is the Critical Effector for Killing of Candida albicans by the Cationic Protein, Histatin 5*. Journal Of Biological Chemistry 2004, 279: 55060-55072. PMID: 15485849, DOI: 10.1074/jbc.m411031200.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsMeSH Keywords4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic AcidAdenosine TriphosphateAllelesAnionsAntifungal AgentsAntimicrobial Cationic PeptidesBlotting, WesternCandida albicansCation Transport ProteinsCationsCell MembraneCell SeparationChloride ChannelsChloridesCytoplasmDNA PrimersDNA, ComplementaryDose-Response Relationship, DrugElectrophysiologyEscherichia coliFlow CytometryGene DeletionGenetic Complementation TestHistatinsHistidineModels, ChemicalModels, GeneticOligonucleotidesOpen Reading FramesPatch-Clamp TechniquesPlasmidsPotassiumProtease InhibitorsProtein BindingProtein Structure, TertiaryReverse Transcriptase Polymerase Chain ReactionRNARubidiumSaccharomyces cerevisiae ProteinsSalivary Proteins and PeptidesTime FactorsConceptsHst 5Hst 5 toxicityCritical effectorWild-type cellsTrk1 potassium transporterC. albicansPotassium transportersDiploid organismsOverexpression strainSingle copyCytoplasmic sequestrationPlasma membraneHistatin 5Essential pathwayPathogenic fungiCandida albicansAnion channel inhibitorsGenesTrk1pProteinATP lossChloride conductanceSmall moleculesEffectorsPossible roleChloride Channel Function in the Yeast TRK-Potassium Transporters
Kuroda T, Bihler H, Bashi E, Slayman CL, Rivetta A. Chloride Channel Function in the Yeast TRK-Potassium Transporters. The Journal Of Membrane Biology 2004, 198: 177-192. PMID: 15216418, DOI: 10.1007/s00232-004-0671-1.Peer-Reviewed Original ResearchCitationsMeSH Keywords and Concepts
1998
Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae
Bertl A, Bihler H, Kettner C, Slayman CL. Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae. Pflügers Archiv - European Journal Of Physiology 1998, 436: 999-1013. PMID: 9799419, DOI: 10.1007/s004240050735.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsYeast plasma membranePlasma membraneMembrane proteinsYeast membranesFunctional analysisHeterologous membrane proteinsFacile genetic manipulationDetailed functional analysisPreliminary functional analysisYeast vacuolar membraneGigaseal formationHeterologous genesYeast vacuoleCytoplasmic proteinsVacuolar membraneFungal proteinsGenetic manipulationSpecific proteinsPolyploid strainsSaccharomycesNative proteinYeastProtoplastsIon channelsProtein
News
News
Get In Touch
Contacts
Cellular & Molecular Physiology
PO Box 208026, 333 Cedar Street
New Haven, CT 06520-8026
United States