Skip to Main Content

Molecular Cell Biology, Genetics, and Development (MCGD) Track

MCGD Track Leadership

  • Co-Director Academics, MCGD Track

    Assistant Professor of Molecular, Cellular, and Developmental Biology; Assistant Professor

    Research Interests
    • Endoplasmic Reticulum
    • Molecular Biology
    • Nuclear Envelope
    • Organelles
    • Caenorhabditis elegans
    • Lamins
    • Lipid Metabolism
    • Diseases

    Dr. Bahmanyar received her undergraduate degree from UC Berkeley and her Ph.D. from Stanford University.  She was a post-doctoral fellow with Dr. Karen Oegema at the Ludwig Institute for Cancer Research at UC San Diego where she recognized the advantages of the early C. elegans embryo as a tractable model system to dissect mechanisms that control nuclear envelope dynamics to ensure genome protection. Her post-doctoral work with elucidated an important new principle involving local regulation of phospholipid synthesis in specifying the nuclear envelope domain within the continuous endoplasmic reticulum (ER). Her work now is focused on elucidating mechanisms underpinning regulatory roles for lipid composition and dynamics in nuclear envelope and ER membrane remodeling and genome protection. 

  • Co-Director Admissions, MCGD Track

    Associate Professor Tenure

    Research Interests
    • Chromatin
    • DNA Damage
    • Genetics
    • Histones
    • Stem Cells
    • Cellular Reprogramming

    Dr. Andrew Xiao is an associate professor in the Department of Genetics at the Yale University School of Medicine. He is a member of the Yale Stem Cell Center. Dr. Xiao’s laboratory focuses on epigenetic regulation in pluripotent stem cells, including embryonic stem cells and induced pluripotenct stem cells (iPSC). His laboratory has made significant contributions to the understanding of the maintenance of pluripotency, as well as the recent discovery of novel epigenetic mechanisms, i.e., N6-methyl-adenine, in mammalian genomes. Dr. Xiao received his Ph.D degree from Terry Van Dyke’s lab at UNC-Chapel Hill and postdoctoral training from David Allis’ lab at Rockefeller University. Since 2009, Andrew Xiao is a recipient of the NCI Howard Temin Award in Cancer Research (K99/R00) and in 2012, he received the New Scholar Award from the Ellison Medical Foundation. He is a recipient of the Outstanding Early Investigator Awards from the Ludwig Family Foundation since 2015. 

Registrar

Faculty

  • Assistant Professor of Pharmacology

    Research Interests
    • Neoplasm Metastasis

    Our lab uses multidisciplinary approaches to understand the impact of RNA metabolism in development, health and disease. We are primarily focused in identifying the physiological and pathophysiological roles of RNA modifications and non-coding RNAs at the molecular, cellular and organismal levels. Claudio, a native of Chile, obtained his Ph.D. from Cornell University in NYC. He was a postdoctoral fellow at the Rockefeller University before joining Yale University in 2017.

  • Co-Track Director Academics, MCGD Track

    Assistant Professor of Molecular, Cellular, and Developmental Biology; Assistant Professor

    Research Interests
    • Endoplasmic Reticulum
    • Molecular Biology
    • Nuclear Envelope
    • Organelles
    • Caenorhabditis elegans
    • Lamins
    • Lipid Metabolism
    • Diseases

    Dr. Bahmanyar received her undergraduate degree from UC Berkeley and her Ph.D. from Stanford University.  She was a post-doctoral fellow with Dr. Karen Oegema at the Ludwig Institute for Cancer Research at UC San Diego where she recognized the advantages of the early C. elegans embryo as a tractable model system to dissect mechanisms that control nuclear envelope dynamics to ensure genome protection. Her post-doctoral work with elucidated an important new principle involving local regulation of phospholipid synthesis in specifying the nuclear envelope domain within the continuous endoplasmic reticulum (ER). Her work now is focused on elucidating mechanisms underpinning regulatory roles for lipid composition and dynamics in nuclear envelope and ER membrane remodeling and genome protection. 

  • Professor of Cell Biology and of Biomedical Engineering

    Research Interests
    • Cell Nucleus
    • Endoplasmic Reticulum
    • Microscopy, Fluorescence
    • Microscopy, Confocal
    • Cellular Structures

    Joerg Bewersdorf is a Professor of Cell Biology and of Biomedical Engineering at Yale University. He received his Master's degree (Dipl. Phys., 1998) and his doctoral degree in physics (Dr. rer. nat., 2002) training with Dr. Stefan W. Hell at the Max Planck Institute for Biophysical Chemistry in Goettingen, Germany. After 4 years at The Jackson Laboratory in Bar Harbor, Maine, he relocated his research group to Yale University in 2009. An optical physicist/biophysicist by training, Dr. Bewersdorf has been a long-time contributor to the field of super-resolution light microscopy development and the application of these techniques to cell biological questions.

  • Associate Professor of Neurology

    Research Interests
    • Biochemistry
    • Central Nervous System
    • Neurology
    • Neurosciences
    • Synapses

    Thomas Biederer received his Ph.D. in Cell Biology from the Humboldt-Universität zu Berlin, Germany. Thomas Biederer then pursued postdoctoral training with Dr. Thomas Südhof at the UT Southwestern Medical Center at Dallas to investigate mechanisms of synapse formation. He started his research group in 2003 as faculty member at Yale University, was 2013-2019 at Tufts University, and joined the Yale faculty again in 2019.

    Dr. Biederer’s multidisciplinary research is motivated by his deep-seated interest in the biology of synapses, the cellular structures that connect neurons into networks. His long-term goals are to define how synapses develop, understand their roles in cognition, and investigate the profound disease relevance of synaptic aberrations. Progress from his group is providing insights into trans-synaptic complexes and how they dynamically organize synapse formation and maturation in vitro and in vivo. Attaining these goals is of importance to human health as altered synapse formation and stability underlie devastating brain disorders, including those that are neurodevelopmental diseases and related to drugs of abuse.

  • Sterling Professor of Molecular, Cellular, and Developmental Biology and Professor of Molecular Biophysics and Biochemistry; Investigator, Howard Hughes Medical Institute, Molecular, Cellular and Developmental Biology

    Research Interests
    • Bacteria
    • Biochemistry
    • Biology
    • Biotechnology
    • Fungi
    • Genetics, Microbial
    • Microbiology
    • Molecular Biology
    • Computational Biology
    • Genomics
    • Metabolomics

    Dr. Breaker is a Sterling Professor of the Department of Molecular, Cellular and Developmental Biology at Yale University, is jointly appointed as a professor in the Department of Molecular Biophysics and Biochemistry, and is an Investigator with the Howard Hughes Medical Institute. His graduate studies with Dr. Peter Gilham at Purdue University focused on the synthesis of RNA and the catalytic properties of nucleic acids. As a postdoctoral researcher with Dr. Gerald Joyce at The Scripps Research Institute, Dr. Breaker pioneered a variety of in vitro evolution strategies to isolate novel RNA enzymes and was the first to discover catalytic DNAs or “deoxyribozymes” using this technology. Since establishing his laboratory at Yale in 1995, Dr. Breaker has continued to conduct research on the advanced functions of nucleic acids, including ribozyme reaction mechanisms, molecular switch technology, next-generation biosensors, and catalytic DNA engineering. In addition, his laboratory has established the first proofs that metabolites are directly bound by messenger RNA elements called riboswitches. Dr. Breaker’s research findings have been published in more than 220 scientific papers, book chapters, and patent applications, and his research has been funded by grants from the NIH, NSF, DARPA, the Hereditary Disease Foundation, and from several biotechnology and pharmaceutical companies. He is the recipient of fellowships from the Arnold and Mabel Beckman Foundation, the David and Lucile Packard Foundation, and the Hellman Family Trust. In recognition of his research accomplishments at Yale, Dr. Breaker received the Arthur Greer Memorial Prize (1997), the Eli Lilly Award in Microbiology (2005), the Molecular Biology Award from the U.S. National Academy of Sciences (2006), and the Merck Award from the American Society for Biochemistry and Molecular Biology (2016). Dr. Breaker was inducted into the U.S. National Academy of Sciences in 2014. He has cofounded two biotechnology companies and is a scientific advisor for industry and for various government agencies. He serves on the editorial board for the scientific journals RNA Biology, RNA, and Cell Chemical Biology.

  • Assistant Professor, Molecular, Cellular and Developmental Biology

    Research Interests
    • Cell Compartmentation
    • Cell Cycle
    • Cell Biology
    • Homeostasis
    • Signal Transduction
    • Genomics
    • Organelle Shape
    • High-Throughput Screening Assays

    David Breslow is an Assistant Professor in the Department of Molecular, Cellular and Developmental Biology at Yale University. David received an A.B. in Biochemical Sciences from Harvard University in 2004, working in the laboratory of Dr. Stuart Schreiber. David then did his graduate work at the University of California, San Francisco in Dr. Jonathan Weissman’s lab. There he developed new high-throughput functional genomic tools for budding yeast and defined the function of Orm family proteins in sphingolipid homeostasis. As a postdoctoral fellow, David worked with Dr. Maxence Nachury at Stanford University, where he used a semi-permeabilized cell system to study protein entry into primary cilia and developed a CRISPR/Cas9-based screening platform to investigate ciliary signaling. A central focus of David’s work has been applying new systematic approaches to address fundamental questions in cell biology, with a current emphasis on the regulation and functions of the mammalian primary cilium. David joined the Yale MCDB faculty in January 2017.

  • Benjamin Silliman Professor of Chemistry

    Research Interests
    • Electron Spin Resonance Spectroscopy
    • Metalloproteins
    • Molecular Biology
    • Photosynthesis

    A graduate of the University of Minnesota, Prof. Gary Brudvig earned his Ph.D. at the California Institute of Technology. He joined the Yale faculty in 1982. In addition to serving as a professor in and chair of the Department of Chemistry, he is also Director of the Energy Sciences Institute on Yale's West Campus, is a professor of molecular biophysics and biochemistry and is affiliated with the Yale Center for Green Chemistry.

    Brudvig is the project leader of a team of Yale chemists and other scientists who, under the auspices of the U.S. Department of Energy, are hoping to improve the efficiency of solar-energy utilization. Its aim is to attach manganese complexes to titanium dioxide nanoparticles in order to develop a system that will efficiently produce renewable fuel using solar energy.

    From 1983 to 1986, Brudvig was a Searle Scholar at Yale. The Searle Scholarship program supports outstanding work by junior faculty members at select academic institutions. He was the Camille and Henry Dreyfus Teacher Scholar, a distinction given to “talented young faculty in the chemical sciences,” from 1985 to 1990. He was an Alfred P. Sloan Research Fellow 1986-1988.

    Brudvig was elected to the American Academy of Arts and Sciences in 1995.

  • Professor of Pediatrics (Cardiology)

    Research Interests
    • Cardiology
    • Genetics
    • Heart Diseases
    • Kartagener Syndrome
    • Situs Inversus
    • Heterotaxy Syndrome

    Martina Brueckner obtained her BS and MD degrees from the University of Virginia, followed by a Pediatric Residency at the University of Pittsburgh and a Pediatric Cardiology Fellowship at Yale University School of Medicine. Her clinical and research focus is genetics of congenital heart disease (CHD). The goal of the lab's work is to determine the genetic cause and developmental mechanisms underlying CHD with a focus on the function of cilia in heart development. Our work aims to bridge research in the basic developmental biology mechanisms underlying development of the embryonic left-right axis with clinical pediatric cardiology and cardiac genetics.  The laboratory has been integral in understanding the cellular and molecular mechanism underlying vertebrate LR asymmetry, identifying genes and mechanism by which motile and immotile cilia establish an early asymmetric calcium signal that is essential to normal LR development of the heart. As part of the Pediatric Cardiac Genomics Consortium (PCGC), we are now combining our understanding of the basic biology underlying left-right development with state-of-the-art genomic approaches to a more comprehensive understanding of human CHD. We are focusing on the ability to identify the genetic causes of CHD, and to directly test putative genetic causes of human CHD identified from genomic analysis of patient DNA in animal model systems including mouse and zebrafish, and finally to  link genetic and developmental mechanisms of CHD to improved care of patients with CHD.

    Dr. Brueckner's clinical focus is on patients with genetic causes of congenital heart disease. It has become increasingly apparent that a large portion of cardiovascular disease in children and adolescents has as its underlying etiology a genetic defect.  Dr. Brueckner co-founded one of the first pediatric cardiac genetics clinics at Yale-New Haven Children's Hospital. The clinic provides comprehensive diagnostic evaluation and follow-up care for patients with genetic-cardiovascular disease. Dr. Brueckner has been a staff cardiologist since completing her fellowship at Yale in 1990.

  • Professor of Cell Biology; Deputy Chair, Cell Biology

    Professor Burd received a PhD from Northwestern University for research with Professor Gideon Dreyfuss investigating pre-mRNA processing. In 1998, after postdoctoral studies with Professor Scott Emr of the Howard Hughes Medical Institute at the University of California, San Diego, he started his independent research program at the University of Pennsylvania School of Medicine, investigating inter-organelle trafficking. In 2011 be moved to the Department of Cell Biology at Yale School of Medicine. Dr. Burd received a MERIT award from the US National Institutes of Health in 2017, and he was elected Fellow of the American Association for the Advancement of Science (AAAS) in 2018 for his contributions toward understanding organelle biogenesis pathways.

  • C. N. H. Long Professor of Cellular And Molecular Physiology and Professor of Cell Biology; Chair, Cellular and Molecular Physiology

    Research Interests
    • Cell Biology
    • Epithelial Cells
    • Kidney
    • Polycystic Kidney Diseases
    • Physiology
    • Ion Pumps

    Michael J. Caplan received his bachelors degree from Harvard University and his M.D. and Ph.D. degrees from Yale University in 1987. He joined Yale's Department of Cellular and Molecular Physiology as a faculty member in 1988, and is currently the C.N.H. Long Professor of Cellular and Molecular Physiology and Cell Biology.

    He has received fellowships from the Helen Hay Whitney Foundation, the David and Lucille Packard Foundation for Science and Engineering, and a National Young Investigator Award from the National Science Foundation. He has also received the Young Investigator Awards from the American Physiological Society and the American Society of Nephrologists.

    His work focuses on understanding the ways in which kidney cells organize and maintain their unique structures. His laboratory also studies the mechanisms responsible for Autosomal Dominant Polycystic Kidney Disease, and is working to identify targets for new therapies.

  • Associate Professor of Neurology and Neuroscience; Associate Professor, Neurology; Associate Professor of Neuroscience; Deputy Chair of Neuroscience

    Research Interests
    • Neurology
    • Neuronal Ceroid-Lipofuscinoses
    • Parkinson Disease
    • Synapses
    • Receptors, Presynaptic
    • Neurodegenerative Diseases

    Sreeganga S. Chandra received her Ph.D. in Chemistry from Purdue University. In her postdoctoral research, she pursued her interest in neuronal cell biology and neurodegeneration in the lab of Thomas C. Südhof at UT Southwestern Medical Center at Dallas. She is currently an Associate Professor in the Department of Neurology, and Neuroscience. She is also the Deputy Chair for the Department of Neuroscience. 

  • Assistant Professor

    Research Interests
    • Immunotherapy
    • RNA, Circular

    Grace Chen received her undergraduate training in the College of Chemistry at UC Berkeley. She attended Harvard University for her PhD where she worked in David Liu's laboratory to discover and characterize novel RNA modifications. Her postdoctoral research was at Stanford University in Howard Chang's group, where she investigated circular RNA immunity. Grace Chen joined Yale University as a faculty in the Department of Immunobiology in 2019. Her research focuses on the functions and regulations of circular RNAs and RNA modifications in health and disease.