2024
A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging
Dong S, Cai Z, Hangel G, Bogner W, Widhalm G, Huang Y, Liang Q, You C, Kumaragamage C, Fulbright R, Mahajan A, Karbasi A, Onofrey J, de Graaf R, Duncan J. A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging. Medical Image Analysis 2024, 99: 103358. PMID: 39353335, DOI: 10.1016/j.media.2024.103358.Peer-Reviewed Original ResearchDenoising diffusion modelsDeep learning-based super-resolution methodsLearning-based super-resolution methodsMulti-scale super-resolutionGenerative modelSuper-resolution methodsDeep learning modelsHigh-resolution magnetic resonance spectroscopic imagingHigh-quality imagesPost-processing approachSuper-resolutionFlow-based networksLearning modelsLow resolutionTruncation stepLow-resolution dataSharpness adjustmentNetworkSensitivity restrictionsUncertainty estimationDiffusion modelImagesCapabilitySampling processSpectroscopic imaging
2022
Flow-Based Visual Quality Enhancer for Super-Resolution Magnetic Resonance Spectroscopic Imaging
Dong S, Hangel G, Chen E, Sun S, Bogner W, Widhalm G, You C, Onofrey J, de Graaf R, Duncan J. Flow-Based Visual Quality Enhancer for Super-Resolution Magnetic Resonance Spectroscopic Imaging. Lecture Notes In Computer Science 2022, 13609: 3-13. DOI: 10.1007/978-3-031-18576-2_1.Peer-Reviewed Original ResearchAdversarial networkVisual qualityDeep learning-based super-resolution methodsLearning-based super-resolution methodsFlow-based modelImage visual qualityGenerative adversarial networkHigh visual qualitySuper-resolution methodSuper-resolved imagesGenerative modelHigh-resolution imagesImage modalitiesFlow-based methodNetworkLow spatial resolutionUncertainty estimationImagesPromising resultsEnhancer networkAnatomical informationHigh fidelityEssential toolDatasetQuality adjustmentDual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction
Zhou B, Schlemper J, Dey N, Mohseni Salehi SS, Sheth K, Liu C, Duncan JS, Sofka M. Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction. Medical Image Analysis 2022, 81: 102538. PMID: 35926336, DOI: 10.1016/j.media.2022.102538.Peer-Reviewed Original ResearchConceptsNon-Cartesian MRI reconstructionMRI reconstructionUndersampled dataPrevious baseline methodsSelf-supervised approachSelf-supervised learningHigh-quality reconstructionReconstruction networkAppearance consistencyDataset demonstrateBaseline methodsImage domainDisjoint partitionsSupervised trainingPractical adoptionReconstruction accuracyDomain partitionImproved image qualityImage qualityDDSSSampling patternK-spaceExperimental resultsNetworkMotion robustness
2021
MDPET: A Unified Motion Correction and Denoising Adversarial Network for Low-Dose Gated PET
Zhou B, Tsai YJ, Chen X, Duncan JS, Liu C. MDPET: A Unified Motion Correction and Denoising Adversarial Network for Low-Dose Gated PET. IEEE Transactions On Medical Imaging 2021, 40: 3154-3164. PMID: 33909561, PMCID: PMC8588635, DOI: 10.1109/tmi.2021.3076191.Peer-Reviewed Original ResearchConceptsMotion estimationPyramid networkAdversarial networkAccurate motion estimationMotion correctionLow-noise reconstructionGated positron emission tomographyMotion correction methodMotion estimation networkGated PET dataEstimation networkRecurrent layersDenoising NetworkRespiratory motion blurringExperimental resultsLow-noise imagesMotion blurringNoise levelCorrection methodNetworkPET reconstructionPrevious methodsImage qualityImagesEstimationMulti-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography
Ahn SS, Ta K, Thorn S, Langdon J, Sinusas AJ, Duncan JS. Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography. Lecture Notes In Computer Science 2021, 12901: 348-357. PMID: 34729554, PMCID: PMC8560213, DOI: 10.1007/978-3-030-87193-2_33.Peer-Reviewed Original ResearchPerformance of segmentationLeft ventricle segmentationVentricle segmentationMedical image segmentation modelsSpatiotemporal featuresAttention networkImage segmentation modelSequence of imagesAttention mechanismSegmentation modelTedious taskTarget imageSegmentationEchocardiography imagesExperimental resultsImagesNetworkAnatomy-Constrained Contrastive Learning for Synthetic Segmentation Without Ground-Truth
Zhou B, Liu C, Duncan J. Anatomy-Constrained Contrastive Learning for Synthetic Segmentation Without Ground-Truth. Lecture Notes In Computer Science 2021, 12901: 47-56. DOI: 10.1007/978-3-030-87193-2_5.Peer-Reviewed Original ResearchSegmentation networkContrastive learningManual segmentationSuperior segmentation performanceObject of interestSynthetic SegmentationManual effortSegmentation performanceTraining dataUnsupervised adaptationImaging dataSource modalitySegmentationNetworkPrevious methodsLearningLarge amountSuccessful applicationPET imaging dataImagesObjectsCodeDataNew imaging modalityLimited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer
Zhou B, Zhou S, Duncan JS, Liu C. Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer. IEEE Transactions On Medical Imaging 2021, 40: 1792-1804. PMID: 33729929, PMCID: PMC8325575, DOI: 10.1109/tmi.2021.3066318.Peer-Reviewed Original ResearchConceptsAttention networkView reconstructionGrand challenge datasetLimited angle reconstructionHigh-quality reconstructionNeural network methodSparse-view reconstructionExperimental resultsLimited angle acquisitionArchitecture issuesSparse viewsChallenge datasetLimited view dataView dataNeural architectureQuality reconstructionNetwork methodTomographic reconstructionReconstructed imagesProjection viewsPrevious methodsAngle reconstructionDatasetNetworkAngle acquisitionShape-Regularized Unsupervised Left Ventricular Motion Network With Segmentation Capability In 3d+ Time Echocardiography
Ta K, Ahn SS, Stendahl JC, Sinusas AJ, Duncan JS. Shape-Regularized Unsupervised Left Ventricular Motion Network With Segmentation Capability In 3d+ Time Echocardiography. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2021, 00: 536-540. PMID: 34168721, PMCID: PMC8221369, DOI: 10.1109/isbi48211.2021.9433888.Peer-Reviewed Original ResearchConvolutional neural networkAccurate motion estimationCardiac motion patternsMotion estimation performanceDense displacement fieldB-mode echocardiography imagesSegmentation masksMedical imagesMotion estimationNeural networkSegmentation capabilityTarget imageUnsupervised estimationImportant taskSegmentationMotion patternsDisplacement fieldNetworkEchocardiography imagesEstimation performanceImagesLow signalAdditional challengesMotion networkNoise ratio
2020
Layer Embedding Analysis in Convolutional Neural Networks for Improved Probability Calibration and Classification
Zhang F, Dvornek N, Yang J, Chapiro J, Duncan J. Layer Embedding Analysis in Convolutional Neural Networks for Improved Probability Calibration and Classification. IEEE Transactions On Medical Imaging 2020, 39: 3331-3342. PMID: 32356739, PMCID: PMC7606489, DOI: 10.1109/tmi.2020.2990625.Peer-Reviewed Original ResearchConceptsConvolutional neural networkNeural networkClassification taskProbability calibrationTissue classification tasksImage representationBaseline methodsPublic datasetsModel performanceRandom forest modelNetworkBetter performanceForest modelDatasetClassificationTaskCT imagesImagesOriginal model outputMR imagesModel outputInstitutional datasetPerformanceEmbeddingOutputDemographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity
Dvornek NC, Li X, Zhuang J, Ventola P, Duncan JS. Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity. Lecture Notes In Computer Science 2020, 12436: 363-372. PMID: 34308438, PMCID: PMC8299434, DOI: 10.1007/978-3-030-59861-7_37.Peer-Reviewed Original ResearchRecurrent neural network modelRecurrent neural networkNeural network modelFunctional magnetic resonance imaging (fMRI) time series dataAttention mechanismArt resultsNeural networkCross-validation frameworkNetwork modelTime series dataIndividual demographic informationABIDE IImproved classificationNetwork differencesNetworkClassificationFunctional network differencesFrameworkIndividual demographic variablesInformationUnsupervised motion tracking of left ventricle in echocardiography
Ahn SS, Ta K, Lu A, Stendahl JC, Sinusas AJ, Duncan JS. Unsupervised motion tracking of left ventricle in echocardiography. Proceedings Of SPIE--the International Society For Optical Engineering 2020, 11319: 113190z-113190z-7. PMID: 32994659, PMCID: PMC7521020, DOI: 10.1117/12.2549572.Peer-Reviewed Original ResearchMotion trackingGround truth displacement fieldsConvolutional neural networkAccurate motion trackingDense displacement fieldB-mode echocardiography imagesU-NetNeural networkTracking frameworkNon-rigid registration algorithmTarget imageRegistration algorithmTarget frameSource frameAlgorithmEchocardiography imagesFavorable performanceDatasetImagesTrackingDisplacement estimationLarge amountEchocardiographic imagesSegmentationNetwork
2019
Invertible Network for Classification and Biomarker Selection for ASD
Zhuang J, Dvornek NC, Li X, Ventola P, Duncan JS. Invertible Network for Classification and Biomarker Selection for ASD. Lecture Notes In Computer Science 2019, 11766: 700-708. PMID: 32274471, PMCID: PMC7144624, DOI: 10.1007/978-3-030-32248-9_78.Peer-Reviewed Original ResearchInvertible networksDeep learning methodsDeep learning modelsBlack-box natureLowest regression errorRegression tasksClassification taskLearning methodsLearning modelDecision boundariesModel decisionsImportant edgesLinear classifierConnectivity matrixASD classificationNetworkBlack-box representationBiomarker selectionRegression errorsData pointsImportance measuresTaskNovel methodClassificationClassifier
2018
Liver Tissue Classification Using an Auto-context-based Deep Neural Network with a Multi-phase Training Framework
Zhang F, Yang J, Nezami N, Laage-gaupp F, Chapiro J, De Lin M, Duncan J. Liver Tissue Classification Using an Auto-context-based Deep Neural Network with a Multi-phase Training Framework. Lecture Notes In Computer Science 2018, 11075: 59-66. PMID: 32432233, PMCID: PMC7236808, DOI: 10.1007/978-3-030-00500-9_7.Peer-Reviewed Original ResearchNeural networkNovel deep convolutional neural networkStandard neural network approachesTraining frameworkDeep convolutional neural networkU-Net-like architectureTissue classificationConvolutional neural networkDeep neural networksNeural network approachSegmentation masksBenchmark methodsNetwork approachPatch-based strategyLearning spacesLiver tissue classificationMagnetic resonance imagesPromising resultsNetworkImagesPredictive modelClassificationFrameworkResonance imagesArchitectureLearning Generalizable Recurrent Neural Networks from Small Task-fMRI Datasets
Dvornek NC, Yang D, Ventola P, Duncan JS. Learning Generalizable Recurrent Neural Networks from Small Task-fMRI Datasets. Lecture Notes In Computer Science 2018, 11072: 329-337. PMID: 30873514, PMCID: PMC6411297, DOI: 10.1007/978-3-030-00931-1_38.Peer-Reviewed Original ResearchConceptsRecurrent neural networkNeural networkTask fMRI datasetsMedical image analysis problemsSuch deep networksImage analysis problemsTask fMRI scanTypical control subjectsDeep networkDeep learningTraining lossSmall datasetsLarge datasetsNumber of approachesAutism spectrum disorderAnalysis problemDatasetNetworkTraining runsImage analysisGeneralizable modelNon-imaging variablesSpectrum disorderFMRI analysisModel performanceCombining Phenotypic and Resting-State FMRI Data for Autism Classification with Recurrent Neural Networks
Dvornek NC, Ventola P, Duncan JS. Combining Phenotypic and Resting-State FMRI Data for Autism Classification with Recurrent Neural Networks. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2018, 2018: 725-728. PMID: 30288208, PMCID: PMC6166875, DOI: 10.1109/isbi.2018.8363676.Peer-Reviewed Original ResearchAutism spectrum disorderRecurrent neural networkNeural networkAutism Brain Imaging Data ExchangeSingle deep learning frameworkHeterogeneity of ASDFunctional magnetic resonance imagingDeep learning frameworkResting-state fMRI dataResting-state functional magnetic resonance imagingBetter classification accuracyAutism classificationSpectrum disorderData exchangeLearning frameworkFMRI dataClassification accuracyCross-validation frameworkChallenging taskStraightforward taskPrior workNetworkSuch dataRsfMRITask2-Channel Convolutional 3D Deep Neural Network (2CC3D) for FMRI Analysis: ASD Classification and Feature Learning
Li X, Dvornek NC, Papademetris X, Zhuang J, Staib LH, Ventola P, Duncan JS. 2-Channel Convolutional 3D Deep Neural Network (2CC3D) for FMRI Analysis: ASD Classification and Feature Learning. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2018, 2018: 1252-1255. PMID: 32983370, PMCID: PMC7519578, DOI: 10.1109/isbi.2018.8363798.Peer-Reviewed Original ResearchConvolutional neural networkNeural networkCNN convolutional layerSpatial featuresASD classificationDeep neural networksMean F-scoreTraditional machineFeature learningConvolutional layersInput formatF-scoreClassification modelTemporal informationNetworkWindow parametersImagesClassificationConvolutionalTemporal statisticsMachineLearningFeaturesFormatScheme