2024
Multimodality Molecular Imaging of Brain Tumor Using Simultaneous [18F]FET-PET/MRSI
Ma C, Han P, Marin T, Zhuo Y, Shih H, Fakhri G. Multimodality Molecular Imaging of Brain Tumor Using Simultaneous [18F]FET-PET/MRSI. 2024, 00: 1-2. DOI: 10.1109/nss/mic/rtsd57108.2024.10656528.Peer-Reviewed Original ResearchList-mode dataMR spectroscopic imagingSpatial resolutionAccurate brain tumor delineationMR physicsIsotropic resolutionBrain tumor delineationImprove treatment planningSpectroscopic imagingTumor delineationSignal-to-noise ratioIntact blood-brain barrierImaging speedAmino acid radiotracerImaging timeMR signalHigher proliferation activityStructural MRTreatment planningBlood-brain barrierMR spectroscopic imaging dataMolecular imaging of brain tumorsTumor involvementTumor infiltrationTumor marginsThe role of 18F-FDG PET in minimizing variability in gross tumor volume delineation of soft tissue sarcomas
Najem E, Marin T, Zhuo Y, Lahoud R, Tian F, Beddok A, Rozenblum L, Xing F, Moteabbed M, Lim R, Liu X, Woo J, Lostetter S, Lamane A, Chen Y, Ma C, El Fakhri G. The role of 18F-FDG PET in minimizing variability in gross tumor volume delineation of soft tissue sarcomas. Radiotherapy And Oncology 2024, 194: 110186. PMID: 38412906, PMCID: PMC11042980, DOI: 10.1016/j.radonc.2024.110186.Peer-Reviewed Original ResearchGross tumor volume delineationGross tumor volumeDice similarity coefficientF-FDG PET imagingSoft tissue sarcomasInter-reader variabilityGTV delineationRadiation therapy treatment planningF-FDGF-FDG PETTherapy treatment planningPerformance level estimationTumor volume delineationTissue sarcomasPET imagingVolume delineationSimultaneous truthHausdorff distanceDice similarity coefficient scoreAccurate gross tumor volumeImaging modality groupsWilcoxon signed-rank testStatistically significant decreaseSigned-rank testTumor volumeLabel-free Imaging with Photonic Crystal Surface for Hematopoietic Stem Cell Differentiation
Zhuo Y, Choi J, Marin T, Yu H, Harley B, Cunningham B. Label-free Imaging with Photonic Crystal Surface for Hematopoietic Stem Cell Differentiation. 2024, jm4a.19. DOI: 10.1364/translational.2024.jm4a.19.Peer-Reviewed Original Research
2023
Balanced Steady-State Free Precession and Radial Sampling for Arterial Spin Labeled Perfusion Imaging
Han P, Marin T, Zhuo Y, Ouyang J, Fakhri G, Ma C. Balanced Steady-State Free Precession and Radial Sampling for Arterial Spin Labeled Perfusion Imaging. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2023 DOI: 10.58530/2023/0373.Peer-Reviewed Original ResearchArterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling
Han P, Marin T, Zhuo Y, Ouyang J, El Fakhri G, Ma C. Arterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling. Magnetic Resonance Imaging 2023, 102: 126-132. PMID: 37187264, PMCID: PMC10524790, DOI: 10.1016/j.mri.2023.05.005.Peer-Reviewed Original ResearchConceptsOff-resonance effectsBalanced steady-state free precessionPhase-cycling techniqueTemporal SNRBalanced steady-state free precession acquisitionRadial sampling schemeSpoiled gradient-recalled acquisitionRadial samplingCartesian sampling schemeBalanced steady-state free precession readoutK-space dataSampling schemeSpin labelingSteady-state free precessionK-spaceImage readoutBanding artifactsMotion-related artifactsReadoutFree precessionArterial spin labelingImage reconstructionParallel imagingImaging timePerfusion-weighted imaging
2022
Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment‐based manifold learning
Ma C, Han P, Zhuo Y, Djebra Y, Marin T, Fakhri G. Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment‐based manifold learning. Magnetic Resonance In Medicine 2022, 89: 1297-1313. PMID: 36404676, PMCID: PMC9892363, DOI: 10.1002/mrm.29526.Peer-Reviewed Original ResearchConceptsSubspace-based methodsManifold learningIntrinsic low-dimensional structureGlobal coordinationLearning-based methodsNumerical simulation dataSpatial smoothness constraintSparsity constraintSpace alignmentSubspace modelSmoothness constraintSuperior performanceRoot mean square errorLinear transformationMechanical simulationsLow-dimensionalSquare errorSubspaceExperimental dataSpectroscopic imagingQuantum mechanical simulationsCoordinate alignmentMR spectroscopic imagingSpectral quantificationSimulated data
2021
Free‐breathing 3D cardiac T1 mapping with transmit B1 correction at 3T
Han P, Marin T, Djebra Y, Landes V, Zhuo Y, Fakhri G, Ma C. Free‐breathing 3D cardiac T1 mapping with transmit B1 correction at 3T. Magnetic Resonance In Medicine 2021, 87: 1832-1845. PMID: 34812547, PMCID: PMC8810588, DOI: 10.1002/mrm.29097.Peer-Reviewed Original ResearchConceptsFlip-angle estimationCardiac T<sub>1</sub> mappingGradient echo readoutThrough-plane spatial resolutionImaging timePractical imaging timesFree breathingPhantom studyB1 correctionAccelerated imagingIn-planeT)-spaceMyocardial T<sub>1</sub> valuesSubspace-based methodsSpatial resolutionImaging experimentsAcquisition schemeT)-space dataSubject-specific timeCorrectionModified Look-Locker inversion recoveryLook-Locker inversion recoveryTime of data acquisitionAverage imaging timeInversion-recovery sequenceDeep learning-based GTV contouring modeling inter- and intra- observer variability in sarcomas
Marin T, Zhuo Y, Lahoud R, Tian F, Ma X, Xing F, Moteabbed M, Liu X, Grogg K, Shusharina N, Woo J, Lim R, Ma C, Chen Y, El Fakhri G. Deep learning-based GTV contouring modeling inter- and intra- observer variability in sarcomas. Radiotherapy And Oncology 2021, 167: 269-276. PMID: 34808228, PMCID: PMC8934266, DOI: 10.1016/j.radonc.2021.09.034.Peer-Reviewed Original ResearchConceptsGross tumor volumeRadiation therapy treatment planningGross tumor volume contoursGross tumor volume delineationTherapy treatment planningIntra-observer variabilityConsensus contoursGTV contoursPre-operative CT imagesSoft tissue sarcomasRadiation oncologistsTumor volumeBone sarcomasTreatment planningAccurate contoursCT imagesDelineation procedureSarcomaSoft tissueConfidence levelRadiationPatientsHausdorff distanceMultiple contoursX-rayDroplet microfluidic generation of a million optical microparticle barcodes.
Dannenberg P, Wang J, Zhuo Y, Cho S, Kim K, Yun S. Droplet microfluidic generation of a million optical microparticle barcodes. Optics Express 2021, 29: 38109-38118. PMID: 34808870, PMCID: PMC8687102, DOI: 10.1364/oe.439143.Peer-Reviewed Original ResearchNonuniform Fast Fourier Transform on Tpus
Lu T, Marin T, Zhuo Y, Chen Y, Ma C. Nonuniform Fast Fourier Transform on Tpus. 2021, 00: 783-787. DOI: 10.1109/isbi48211.2021.9434068.Peer-Reviewed Original ResearchNonuniform fast Fourier transformFast Fourier transformTensor Processing UnitTPU coresFourier transformImage reconstructionMR image reconstructionTensor operatorsK-spaceK-space dataGoogle’s Tensor Processing UnitDeep learning applicationsNumerical examplesNonuniform gridsScaling analysisCPU implementationMagnetic resonanceHardware acceleratorsLearning applicationsComputational bottleneckProcessing unitMatrix multiplicationPractical runtimeAccelerationOperationAuthor Correction: Laser particles with omnidirectional emission for cell tracking
Tang S, Dannenberg P, Liapis A, Martino N, Zhuo Y, Xiao Y, Yun S. Author Correction: Laser particles with omnidirectional emission for cell tracking. Light: Science & Applications 2021, 10: 43. PMID: 33637671, PMCID: PMC7910486, DOI: 10.1038/s41377-021-00481-1.Peer-Reviewed Original ResearchLaser particles with omnidirectional emission for cell tracking
Tang S, Dannenberg P, Liapis A, Martino N, Zhuo Y, Xiao Y, Yun S. Laser particles with omnidirectional emission for cell tracking. Light: Science & Applications 2021, 10: 23. PMID: 33495436, PMCID: PMC7835369, DOI: 10.1038/s41377-021-00466-0.Peer-Reviewed Original ResearchAngle-dependent intensityFar-field emissionMicrodisk lasersLaser particlesFrequent signal lossSignal-to-noise ratioIntensity fluctuationsOmnidirectional emissionLaser outputUnique optical probesBoundary defectsSignal-to-noiseMicrolasersTracking failureLaserScattering layerDirection-dependentGeneral solutionOptical probeSignal lossParticlesLight scatteringEmissionMicrodiskCell tracking
2020
Accelerating MRI Reconstruction on TPUs
Lu T, Marin T, Zhuo Y, Chen Y, Ma C. Accelerating MRI Reconstruction on TPUs. 2020, 00: 1-9. DOI: 10.1109/hpec43674.2020.9286192.Peer-Reviewed Original ResearchTensor Processing UnitK-space dataData decompositionMeasured k-space dataImage reconstructionAccelerated MRI reconstructionGoogle’s Tensor Processing UnitMR image reconstructionScientific computing problemsAlternating direction methodMachine learning applicationsReconstruction methodImage reconstruction methodDiscrete Fourier transformSparsifying transformCompressive sensingFourier transform operationSparsity constraintMRI reconstructionLearning applicationsCommunication timeNetwork topologyProcessing unitMatrix multiplicationComputational problems
2019
Photonic crystal slab biosensors fabricated with helium ion lithography (HIL)
Zhuo Y, Hu H, Wang Y, Marin T, Lu M. Photonic crystal slab biosensors fabricated with helium ion lithography (HIL). Sensors And Actuators A Physical 2019, 297: 111493. DOI: 10.1016/j.sna.2019.07.017.Peer-Reviewed Original ResearchHelium-ion lithographyPhotonic crystal slabCrystal slabIon lithographyFabricating photonic crystal slabsPhotonic crystal biosensorNano-hole patternsPhotonic bandgapDielectric nanostructuresFabricated nano-structuresLabel-free optical biosensorNanoimprint lithographyNanofabrication processHeliumRefractive indexNano-gratingsRefractometric sensorLithographyNano-structuresNano-patternsOptical biosensorsMaster moldFabrication approachSlabBandgap
2018
Accessible quantitative phase imaging in confocal microscopy with sinusoidal-phase synthetic optical holography.
Canales-Benavides A, Zhuo Y, Amitrano A, Kim M, Hernandez-Aranda R, Carney P, Schnell M. Accessible quantitative phase imaging in confocal microscopy with sinusoidal-phase synthetic optical holography. Applied Optics 2018, 58: a55-a64. PMID: 30873960, DOI: 10.1364/ao.58.000a55.Peer-Reviewed Original ResearchSynthetic optical holographyQuantitative phase imagingOptical holographyPhase imagesQuantitative phase contrastImplementation of quantitative phase imagingCommercial confocal microscopeReference waveFluorescence imaging applicationsPhase contrastHolographyImaging applicationsSample vibrationSynthetic hologramsStain-free imagingHologramConfocal microscopeObservation of living cellsWaveMonitoring cell morphologyQuantitative analysis of focal adhesion dynamics using photonic resonator outcoupler microscopy (PROM)
Zhuo Y, Choi J, Marin T, Yu H, Harley B, Cunningham B. Quantitative analysis of focal adhesion dynamics using photonic resonator outcoupler microscopy (PROM). Light: Science & Applications 2018, 7: 9. PMID: 29963322, PMCID: PMC6020849, DOI: 10.1038/s41377-018-0001-5.Peer-Reviewed Original ResearchFocal adhesion dynamicsFocal adhesion areaFocal adhesion formationPhotonic crystal biosensorCell surface contactFocal adhesionsReflection peak intensityAdhesion dynamicsRegulate adhesionCell membrane componentsCell-surface interactionsLabel-free modalityEvanescent fieldMembrane componentsLabel-free approachMigration speedPeak intensityCluster dimensionCell interactionsQuantitative imagingBasement membraneAdhesion areaEpithelial stem cellsPhotonsCellsPhotonic Resonator Outcoupler Microscopy (PROM) for Quantitative Monitoring of Stem Cell Focal Adhesion Area
Zhuo Y, Choi J, Marin T, Yu H, Harley B, Cunningham B. Photonic Resonator Outcoupler Microscopy (PROM) for Quantitative Monitoring of Stem Cell Focal Adhesion Area. 2018, jtu3a.119. DOI: 10.1364/fio.2018.jtu3a.119.Peer-Reviewed Original Research
2017
Label-free Imaging of Stem Cell Adhesion and Dynamic Tracking of Boundary Evolution Using Photonic Crystal Enhanced Microscopy (PCEM)
Zhuo Y, Choi J, Marin T, Yu H, Harley B, Cunningham B. Label-free Imaging of Stem Cell Adhesion and Dynamic Tracking of Boundary Evolution Using Photonic Crystal Enhanced Microscopy (PCEM). Microscopy And Microanalysis 2017, 23: 1142-1143. DOI: 10.1017/s1431927617006377.Peer-Reviewed Original Research10 Noninvasive optical imaging of stem cell differentiation in biomaterials using photonic crystal surfaces
Choi J, Zhuo Y, Cunningham B, Harley B. 10 Noninvasive optical imaging of stem cell differentiation in biomaterials using photonic crystal surfaces. 2017, 195-207. DOI: 10.1016/b978-0-08-100603-0.00010-9.Peer-Reviewed Original ResearchPhotonic crystal surfacePlastic substratesStem cell differentiationReal timeImaging of stem cellsStem cell fate decisionsCell differentiationCell fate decisionsCell differentiation eventsLabel-free imaging of live cellsCells in vitroNoninvasive optical imagingCrystal surfacePopulations in situLiving cells in vitroSingle-cell levelPhotonic crystalsFate decisionsOrdinary glassSurfaceLabel-free imagingPool of cellsBioengineered platformCell growthPopulation of cellsCell Adhesion Phenotype Library with Photonic Crystal Enhanced Microscopy
Zhuo Y, Choi J, Marin T, Yu H, Harley B, Cunningham B. Cell Adhesion Phenotype Library with Photonic Crystal Enhanced Microscopy. 2017, bos2a.7. DOI: 10.1364/boda.2017.bos2a.7.Peer-Reviewed Original Research