2023
Impact of motion correction on [18F]-MK6240 tau PET imaging
Tiss A, Marin T, Chemli Y, Spangler-Bickell M, Gong K, Lois C, Petibon Y, Landes V, Grogg K, Normandin M, Becker A, Thibault E, Johnson K, Fakhri G, Ouyang J. Impact of motion correction on [18F]-MK6240 tau PET imaging. Physics In Medicine And Biology 2023, 68: 105015. PMID: 37116511, PMCID: PMC10278956, DOI: 10.1088/1361-6560/acd161.Peer-Reviewed Original ResearchMeSH KeywordsAgedAlzheimer DiseaseBrainHumansImage Processing, Computer-AssistedMotionPositron-Emission TomographyConceptsMotion correctionPET quantitationImpact of motion correctionList-mode reconstructionMotion correction methodList-mode dataMotion-corrected imagesEffect of motion correctionVoxel displacementsPhantom experimentsOptical tracking dataLong acquisitionBrain PET scansSlow motionImage qualityPET imagingPositron emission tomographyCorrectionMotionCorrection methodRates of tau accumulationHead motionMotion metricsPhantomPositronArterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling
Han P, Marin T, Zhuo Y, Ouyang J, El Fakhri G, Ma C. Arterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling. Magnetic Resonance Imaging 2023, 102: 126-132. PMID: 37187264, PMCID: PMC10524790, DOI: 10.1016/j.mri.2023.05.005.Peer-Reviewed Original ResearchMeSH KeywordsArteriesBrainImage Processing, Computer-AssistedImaging, Three-DimensionalMagnetic Resonance ImagingPerfusionPerfusion ImagingSpin LabelsConceptsOff-resonance effectsBalanced steady-state free precessionPhase-cycling techniqueTemporal SNRBalanced steady-state free precession acquisitionRadial sampling schemeSpoiled gradient-recalled acquisitionRadial samplingCartesian sampling schemeBalanced steady-state free precession readoutK-space dataSampling schemeSpin labelingSteady-state free precessionK-spaceImage readoutBanding artifactsMotion-related artifactsReadoutFree precessionArterial spin labelingImage reconstructionParallel imagingImaging timePerfusion-weighted imagingSuper-resolution in brain positron emission tomography using a real-time motion capture system
Chemli Y, Tétrault M, Marin T, Normandin M, Bloch I, El Fakhri G, Ouyang J, Petibon Y. Super-resolution in brain positron emission tomography using a real-time motion capture system. NeuroImage 2023, 272: 120056. PMID: 36977452, PMCID: PMC10122782, DOI: 10.1016/j.neuroimage.2023.120056.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsBrainImage Processing, Computer-AssistedMotionMotion CapturePhantoms, ImagingPositron Emission Tomography Computed TomographyPositron-Emission TomographyConceptsBrain positron emission tomographySuper-resolutionEvent-by-event basisReal-time motion capture systemSR reconstruction methodTracking cameraVisualization of small structuresPET reconstruction algorithmMoving phantomMeasure target motionLine profilesPET/CT scannerMeasured shiftsImprove image resolutionMotion capture systemMotion tracking devicePositron emission tomographyReconstruction algorithmSpatial resolutionMeasured linesPhantomReal-timeEstimation frameworkIncreased spatial resolutionReconstruction method
2021
Impact of reconstruction parameters on lesion detection and localization in joint ictal/inter-ictal SPECT reconstruction
Onwanna J, Chantadisai M, Tepmongkol S, Fahey F, Ouyang J, Rakvongthai Y. Impact of reconstruction parameters on lesion detection and localization in joint ictal/inter-ictal SPECT reconstruction. Annals Of Nuclear Medicine 2021, 36: 24-32. PMID: 34559366, DOI: 10.1007/s12149-021-01680-x.Peer-Reviewed Original ResearchMeSH KeywordsAdultBrainEpilepsyFemaleHumansImage Processing, Computer-AssistedMalePhantoms, ImagingROC CurveSignal-To-Noise RatioTomography, Emission-Computed, Single-PhotonConceptsLocalization receiver operating characteristicsDetection performanceSubtraction methodJoint methodOptimization iterationsLesion detection performanceSPECT reconstructionEpileptic focus localizationLocalization receiver operating characteristic curvesDifferential imagingInter-ictalLesion detectionIterationPhantom dataConventional subtraction methodPerformanceImagesPatient datasetsReconstruction parametersImpact of reconstruction parametersFocus localizationSubtractionDetectionSPECT dataJoint reconstructionQuantitative PET in the 2020s: a roadmap
Meikle S, Sossi V, Roncali E, Cherry S, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp J, Badawi R, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey D, Eslick E, Willowson K, Dutta J. Quantitative PET in the 2020s: a roadmap. Physics In Medicine And Biology 2021, 66: 06rm01. PMID: 33339012, PMCID: PMC9358699, DOI: 10.1088/1361-6560/abd4f7.Peer-Reviewed Original ResearchMeSH KeywordsArtificial IntelligenceHistory, 20th CenturyHistory, 21st CenturyHumansImage Processing, Computer-AssistedImaging, Three-DimensionalKineticsMedical OncologyNeoplasmsPositron Emission Tomography Computed TomographyPositron-Emission TomographyPrognosisRadiopharmaceuticalsSystems BiologyTomography, X-Ray ComputedConceptsTime-of-flight positron emission tomographyStatistical image reconstructionTotal-body positron emission tomographyPositron emission tomographyQuantitative positron emission tomographyImage reconstructionWhole-body positron emission tomographySensitivity of positron emission tomographyCapabilities of positron emission tomographyImage qualityClinical applicationTracer principleRelevant parametersOncology applicationsPhysicsStatistical qualityExpansion of applicationsEmission tomographyClinical practicePET/MRBiologically relevant parametersSensitive biomarkerPositron
2020
Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR
Marin T, Djebra Y, Han P, Chemli Y, Bloch I, Fakhri G, Ouyang J, Petibon Y, Ma C. Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR. Physics In Medicine And Biology 2020, 65: 235022. PMID: 33263317, PMCID: PMC7985095, DOI: 10.1088/1361-6560/abb31d.Peer-Reviewed Original ResearchMeSH KeywordsArtifactsHumansImage Processing, Computer-AssistedMagnetic Resonance ImagingMovementMultimodal ImagingPositron-Emission TomographyTime FactorsConceptsPositron emission tomography reconstructionMotion-corrected PET reconstructionsPET reconstructionMotion-corrected PET imagesIrregular respiratory motionMotion fieldMotion correction methodMotion correction approachIrregular motion patternsUndersampled k-space dataImage quality of positron emission tomographyQuality of positron emission tomographyMotion patternsLow-rank characteristicsRespiratory motionContrast-to-noise ratioEstimated motion fieldSurrogate signalsMotion correctionK-space dataImage qualityReal-time MR imagingSimultaneous PET/MRMotion artifact reductionPET/MR scannersMR‐based PET attenuation correction using a combined ultrashort echo time/multi‐echo Dixon acquisition
Han P, Horng D, Gong K, Petibon Y, Kim K, Li Q, Johnson K, Fakhri G, Ouyang J, Ma C. MR‐based PET attenuation correction using a combined ultrashort echo time/multi‐echo Dixon acquisition. Medical Physics 2020, 47: 3064-3077. PMID: 32279317, PMCID: PMC7375929, DOI: 10.1002/mp.14180.Peer-Reviewed Original ResearchMeSH KeywordsHumansImage Processing, Computer-AssistedMagnetic Resonance ImagingPhantoms, ImagingPositron-Emission TomographyTomography, X-Ray ComputedConceptsLinear attenuation coefficientPositron emission tomography attenuation correctionPhysical compartmental modelAttenuation correctionShort T<sub>2</sub> componentPET attenuation correctionRadial k-space trajectoryMagnetic resonance (MR)-based methodK-space trajectoriesRadial trajectoryK-spaceAttenuation coefficientDixon acquisitionsPositron emission tomographyWhole white matterMuting methodImage reconstructionImaging speedMR signalMRAC methodPositron emission tomography imagingCorrectionGray matter regionsPhantomMatter regions
2019
Body motion detection and correction in cardiac PET: Phantom and human studies
Sun T, Petibon Y, Han P, Ma C, Kim S, Alpert N, Fakhri G, Ouyang J. Body motion detection and correction in cardiac PET: Phantom and human studies. Medical Physics 2019, 46: 4898-4906. PMID: 31508827, PMCID: PMC6842053, DOI: 10.1002/mp.13815.Peer-Reviewed Original ResearchMeSH KeywordsArtifactsFluorodeoxyglucose F18HeartHumansImage Processing, Computer-AssistedMovementPhantoms, ImagingPositron-Emission TomographyConceptsList-mode dataMotion-compensated image reconstructionMotion correctionCenter of massPET list-mode dataMotion correction methodMotion detectionMotion estimationImage reconstructionPatient body motionDegrade image qualityNonrigid registrationImage qualityMotion transformationCoincident distributionBody motion detectionCardiac positron emission tomographyBack-projection techniqueCovariance matrixImage volumesBody motionPositron emission tomographyBack-projectionReference framePhantomMR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging
Petibon Y, Sun T, Han P, Ma C, Fakhri G, Ouyang J. MR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging. Physics In Medicine And Biology 2019, 64: 195009. PMID: 31394518, PMCID: PMC7007962, DOI: 10.1088/1361-6560/ab39c2.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsArtifactsFluorodeoxyglucose F18Fourier AnalysisHealthy VolunteersHeartHumansImage Processing, Computer-AssistedMagnetic Resonance ImagingMotionMultimodal ImagingMyocardiumPositron-Emission TomographyRespirationConceptsMR-based motion correctionRespiratory motion correctionMotion correctionImproved spatial resolutionReconstructed activity concentrationCardiac PET dataSpatial resolutionCoincidence eventsMR-basedPET imagingContrast-to-noise ratioCardiac PET imagingRespiratory phasesMC dataImprove image qualityMR acquisitionQuantitative accuracyCardiac PETPET dataActivity concentrationsMyocardium wallF-FDG PETDynamics studiesImage qualityMotion artifactsFree-Breathing Three-Dimensional T1 Mapping of the Heart Using Subspace-Based Data Acquisition and Image Reconstruction
Han P, Horng D, Marin T, Petibon Y, Ouyang J, Fakhri G, Ma C. Free-Breathing Three-Dimensional T1 Mapping of the Heart Using Subspace-Based Data Acquisition and Image Reconstruction. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2019, 00: 4008-4011. PMID: 31946750, DOI: 10.1109/embc.2019.8856511.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsHeartImage EnhancementImage Processing, Computer-AssistedImaging, Three-DimensionalMagnetic Resonance ImagingMyocardiumRespirationConceptsRespiratory motionRespiratory gatingLongitudinal relaxation timeSubspace-based methodsLow-rank tensorMagnetic resonance imagingRelaxation timeT1 mappingT)-spaceSubspace-basedSparsity constraintDynamic MR imagingReconstructed mapsSpatiotemporal correlationThree-dimensionalCardiac MRHealthy subjectsIn vivo dataMagnetizationResonance imagingImage functionMR imagingData acquisitionClinical applicationTensor
2018
Joint reconstruction of rest/stress myocardial perfusion SPECT
Lai X, Petibon Y, Fakhri G, Ouyang J. Joint reconstruction of rest/stress myocardial perfusion SPECT. Physics In Medicine And Biology 2018, 63: 135019. PMID: 29897044, PMCID: PMC6245543, DOI: 10.1088/1361-6560/aacc2f.Peer-Reviewed Original ResearchMeSH KeywordsHumansImage Processing, Computer-AssistedModels, TheoreticalMyocardial Perfusion ImagingMyocardiumPhantoms, ImagingSignal-To-Noise RatioTomography, Emission-Computed, Single-PhotonConceptsMyocardial perfusion imagingSingle photon emission computed tomographyReversible defectsSignal-to-noise ratioRest/stress SPECT myocardial perfusion imagingSPECT myocardial perfusion imagingConventional subtraction methodDefect detectionJoint methodPhoton emission computed tomographySubtraction methodReverse mappingClinical dose levelsEmission computed tomographyImprove defect detectionLow noiseNon-invasive assessmentClinical dosePerfusion defectsReduced doseImprove radiologists' performanceReconstruction frameworkRest imagesPerfusion imagingDose levels
2017
Joint reconstruction of Ictal/inter‐ictal SPECT data for improved epileptic foci localization
Rakvongthai Y, Fahey F, Borvorntanajanya K, Tepmongkol S, Vutrapongwatana U, Zukotynski K, Fakhri G, Ouyang J. Joint reconstruction of Ictal/inter‐ictal SPECT data for improved epileptic foci localization. Medical Physics 2017, 44: 1437-1444. PMID: 28211105, PMCID: PMC5462456, DOI: 10.1002/mp.12167.Peer-Reviewed Original ResearchMeSH KeywordsEpilepsies, PartialHumansImage Processing, Computer-AssistedPhantoms, ImagingSignal-To-Noise RatioSubtraction TechniqueTomography, Emission-Computed, Single-PhotonConceptsSPECT reconstruction methodDifferential imagingLow-noise datasetConventional subtraction methodLesion contrastSPECT projection dataEpileptic focus localizationHoffman phantomPatient studiesReconstruction methodJoint methodSPECT projectionsHead phantomPhantom locationsSubtraction methodPhantom studyNuclear medicine physiciansAttenuation backgroundPhantomConventional subtraction approachFocus localizationConventional subtractionReceiver operating characteristicLow noiseProjection dataDirect parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies
Petibon Y, Rakvongthai Y, Fakhri G, Ouyang J. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies. Physics In Medicine And Biology 2017, 62: 3539-3565. PMID: 28379843, PMCID: PMC5739089, DOI: 10.1088/1361-6560/aa6394.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsImage Processing, Computer-AssistedMyocardial Perfusion ImagingPositron-Emission TomographyPyridazinesRadiopharmaceuticalsSignal-To-Noise RatioSwineConceptsPET sinogramsSignal-to-noise ratioList-mode PET dataSiemens Biograph mMR scannerList-mode dataMyocardial perfusion imagingNoise realizationsPET myocardial perfusion imagingLow count levelsLeast-squares fitBiograph mMR scannerPET projection dataOriginal list-mode dataMyocardial blood flowCount levelsParametric reconstructionOSEMReconstruction methodIndependent noise realizationsNormal count levelsSinogramDirect reconstructionDynamic sinogramsKinetic modelPoor signal-to-noise ratio
2016
Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR
Petibon Y, Guehl N, Reese T, Ebrahimi B, Normandin M, Shoup T, Alpert N, Fakhri G, Ouyang J. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR. Physics In Medicine And Biology 2016, 62: 326-343. PMID: 27997375, PMCID: PMC5241952, DOI: 10.1088/1361-6560/aa5087.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsImage Processing, Computer-AssistedMagnetic Resonance ImagingMovementMyocardial Perfusion ImagingMyocardiumPositron-Emission TomographySwineConceptsSimultaneous PET-MRPET myocardial perfusion imagingMyocardial perfusion imagingPoint spread functionPoint-spread function correctionUngated dataMotion correctionPET-MRPartial volume effectsApparent wall thicknessMyocardial blood flowPartial volume effect correctionMR-based motion correctionMotion fieldPET-MR scannersPoint spread function modelPET dataPerfusion imagingImage qualityImpact of motionDynamic myocardial perfusion imagingAttenuation mapNon-rigid registrationAbsolute myocardial blood flowUngated imagesInvestigation of cone-beam CT image quality trade-off for image-guided radiation therapy
Bian J, Sharp G, Park Y, Ouyang J, Bortfeld T, Fakhri G. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy. Physics In Medicine And Biology 2016, 61: 3317-3346. PMID: 27032676, DOI: 10.1088/0031-9155/61/9/3317.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsCone-Beam Computed TomographyHead and Neck NeoplasmsHumansImage Processing, Computer-AssistedPhantoms, ImagingQuality Assurance, Health CareRadiotherapy, Image-GuidedConceptsImage-guided radiation therapyCone-beam CTFiltered-backprojectionImage quality trade-offConventional filtered-backprojectionShort-scan reconstructionsFiltered-backprojection algorithmFan-beam reconstructionTV-based algorithmIterative reconstruction algorithmCatphan phantomRadiation therapyAngular rangeTotal-variationOptimal exposure levelClinical scannerScanning configurationReconstruction algorithmImaging conditionsCatphanPhantomExposure levelsTherapyConfigurationRange
2015
Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR
Huang C, Ouyang J, Reese T, Wu Y, Fakhri G, Ackerman J. Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR. Physics In Medicine And Biology 2015, 60: n369-n381. PMID: 26405761, PMCID: PMC4607313, DOI: 10.1088/0031-9155/60/20/n369.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueBone and BonesBone DensityHumansImage Processing, Computer-AssistedMagnetic Resonance ImagingPhantoms, ImagingPositron-Emission TomographyWaterConceptsAttenuation correctionUltrashort echo timeMR-based attenuation correctionProjection imagesPET attenuation correctionMR attenuation correctionPET-MRPulse sequenceEcho timeDensity variationsPET imagingCorrectionBone density variationWASPIDensity measurementsAttenuation variationsPhantomMR sequencesLack of signalPulseAttenuationAccelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET‐MR: Phantom and patient studies
Huang C, Petibon Y, Ouyang J, Reese T, Ahlman M, Bluemke D, El Fakhri G. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET‐MR: Phantom and patient studies. Medical Physics 2015, 42: 1087-1097. PMID: 25652521, PMCID: PMC4312342, DOI: 10.1118/1.4906247.Peer-Reviewed Original ResearchMeSH KeywordsHeartHumansImage Processing, Computer-AssistedMagnetic Resonance ImagingMovementPhantoms, ImagingPositron-Emission TomographyTime FactorsConceptsPET motion correctionMotion correctionSimultaneous PET-MRTMR dataPET list-mode dataPET-MRList-mode dataCardiac motion correctionPET-MR scannersImage qualityParallel imagingAcquisition timePET imagingRespiratory motionCompressive sensingMotion fieldAttenuation correctionDefect contrastModerate acceleration factorsDegradation of image qualityTagged MRCardiac phantomLong acquisition timesPhantomAccurate motion field
2014
MR‐based motion correction for PET imaging using wired active MR microcoils in simultaneous PET‐MR: Phantom study
Huang C, Ackerman J, Petibon Y, Brady T, Fakhri G, Ouyang J. MR‐based motion correction for PET imaging using wired active MR microcoils in simultaneous PET‐MR: Phantom study. Medical Physics 2014, 41: 041910. PMID: 24694141, PMCID: PMC3978416, DOI: 10.1118/1.4868457.Peer-Reviewed Original ResearchMeSH KeywordsArtifactsBrainImage Processing, Computer-AssistedMagnetic Resonance ImagingMovementPhantoms, ImagingPositron-Emission TomographyTime FactorsConceptsMotion correctionMR-based motion correctionStatic phantom dataPET quantitative accuracyPET-MRPET-MR scannersSimultaneous PET-MRHoffman phantomList-modePositron emission tomography imagingPET reconstructionBrain positron emission tomographyIterative PET reconstructionPhantom dataPhantomQuantitative accuracyIndependent noise realizationsImage contrastNoise realizationsHead motionPET dataPositron emission tomographyStatic referenceBrain PET scansMotion artifactsMotion compensation for brain PET imaging using wireless MR active markers in simultaneous PET–MR: Phantom and non-human primate studies
Huang C, Ackerman J, Petibon Y, Normandin M, Brady T, Fakhri G, Ouyang J. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET–MR: Phantom and non-human primate studies. NeuroImage 2014, 91: 129-137. PMID: 24418501, PMCID: PMC3965607, DOI: 10.1016/j.neuroimage.2013.12.061.Peer-Reviewed Original ResearchConceptsMotion correctionWireless markersList-mode reconstructionReconstructed PET imagesMotion correction techniqueObserver signal-to-noise ratioSimultaneous PET-MRMotion artifactsPET phantomPET contrastPET reconstructionBrain PET imagingPET imagingPhantomBrain PETPET-MRIndependent noise realizationsAccurate quantitative valuesHead motionNoise realizationsPET dataSignal-to-noise ratioStatic referenceBrain PET scansActivation markers
2013
Simultaneous 99mTc‐MDP/123I‐MIBG tumor imaging using SPECT‐CT: Phantom and constructed patient studies
Rakvongthai Y, Fakhri G, Lim R, Bonab A, Ouyang J. Simultaneous 99mTc‐MDP/123I‐MIBG tumor imaging using SPECT‐CT: Phantom and constructed patient studies. Medical Physics 2013, 40: 102506. PMID: 24089927, PMCID: PMC3785531, DOI: 10.1118/1.4820977.Peer-Reviewed Original ResearchConceptsScatter correctionDual-radionuclideContrast recoveryPhantom studyAnthropomorphic torso phantomPatient studiesTumor uptakeTumor imagingSPECT projectionsTorso phantomMonte-CarloPhantom dataPhantomIterative reconstructionOSEMProjection dataDR dataIncrease patient throughputNoise realizationsSPECT-CTImage reconstructionClinical studiesTumorTumor projectionPoisson noise