2024
The Importance of PET Imaging to Understanding Whole-Body Cortisol Metabolism in Alzheimer’s Disease
Bini J. The Importance of PET Imaging to Understanding Whole-Body Cortisol Metabolism in Alzheimer’s Disease. Journal Of Alzheimer's Disease 2024, 99: 113-115. PMID: 38607759, DOI: 10.3233/jad-231463.Peer-Reviewed Original Research
2023
The historical progression of positron emission tomography research in neuroendocrinology
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Frontiers In Neuroendocrinology 2023, 70: 101081. PMID: 37423505, PMCID: PMC10530506, DOI: 10.1016/j.yfrne.2023.101081.Peer-Reviewed Original ResearchConceptsPositron emission tomographyPositron emission tomography researchEmission Tomography ImagingPositron emission tomography (PET) imagingNumber of radiopharmaceuticalsEndocrine organSystematic reviewEmission tomographyPET radioligandHormone actionTomography imagingPET imagingDifferent receptorsHuman brainPET researchImagingSystem actionsSteroidsCliniciansRadioligandHormoneBrainProgressionReceptors
2022
Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo
Bini J, Carson R, Cline G. Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo. Methods In Molecular Biology 2022, 2592: 61-74. PMID: 36507985, DOI: 10.1007/978-1-0716-2807-2_4.Peer-Reviewed Original ResearchConceptsPositron emission tomographyBeta-cell massFunctional beta-cell massDopamine D2/D3 receptorsD2/D3 receptorsBeta-cell lossType 2 diabetesEfficacy of therapeuticsQuantitative positron emission tomographyInsulin secretionDopamine receptorsD3 receptorsGlucose regulationPET radioligandEmission tomographyType 1Clinical usePET imagingReceptorsQuantitative PET imagingVMAT2Cellular transportersImagingVivoQuantitative imagingStress-level glucocorticoids increase fasting hunger and decrease cerebral blood flow in regions regulating eating
Bini J, Parikh L, Lacadie C, Hwang JJ, Shah S, Rosenberg SB, Seo D, Lam K, Hamza M, De Aguiar RB, Constable T, Sherwin RS, Sinha R, Jastreboff AM. Stress-level glucocorticoids increase fasting hunger and decrease cerebral blood flow in regions regulating eating. NeuroImage Clinical 2022, 36: 103202. PMID: 36126514, PMCID: PMC9486604, DOI: 10.1016/j.nicl.2022.103202.Peer-Reviewed Original ResearchConceptsCerebral blood flowRegional cerebral blood flowBlood flowMetabolic hormonesRandomized double-blind cross-over designDouble-blind cross-over designStress level glucocorticoidsPrimary sensory cortexPerfusion magnetic resonanceCross-over designMedial temporal gyrusWhole-brain voxelMedial brainstemSaline daysOvernight infusionCBF responseHunger ratingsPlasma insulinGlucocorticoid effectsHedonic signalsObesity riskLimbic regionsFood intakeNeural regulationDistinct brain networks
2021
The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review
Bini J, Norcross M, Cheung M, Duffy A. The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review. Obesity Surgery 2021, 31: 4592-4606. PMID: 34304378, DOI: 10.1007/s11695-021-05576-7.Peer-Reviewed Original ResearchConceptsPositron emission tomographyBariatric surgeryEmission tomographyBariatric surgery researchMalabsorption of foodBlood flowWhole-body PET imagingRadioligand developmentWeight lossPET imagingAmount of foodSurgery researchPhysiological effectsSurgeryPicomolar concentrationsTomographyRadioactive moleculesMetabolismMalabsorptionObesityPatientsFoodStomachPharmacologyReceptors
2020
Reply: 11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of β-Cell Mass in Patients with Type 1 Diabetes
Bini J, Carson RE, Cline GW. Reply: 11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of β-Cell Mass in Patients with Type 1 Diabetes. Journal Of Nuclear Medicine 2020, 61: 1693-1693. PMID: 32620703, DOI: 10.2967/jnumed.120.250985.Peer-Reviewed Original ResearchBody Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study
Bini J, Bhatt S, Hillmer AT, Gallezot JD, Nabulsi N, Pracitto R, Labaree D, Kapinos M, Ropchan J, Matuskey D, Sherwin RS, Jastreboff AM, Carson RE, Cosgrove K, Huang Y. Body Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study. Molecular Imaging And Biology 2020, 22: 1124-1131. PMID: 32133575, PMCID: PMC7351613, DOI: 10.1007/s11307-020-01490-z.Peer-Reviewed Original ResearchConceptsBody mass indexPositron emission tomographyDehydrogenase type 1Mass indexObese individualsEnzyme 11β-hydroxysteroid dehydrogenase type 1Whole brainType 1Higher body mass indexPositron emission tomography studyVT valuesSevere Alzheimer's diseaseEmission tomography studiesSteroid stress hormonesAge-associated increaseMean whole brainSignificant age-associated increaseRegional distribution volumesVisceral adiposityInsulin resistanceActive cortisolExcess cortisolInactive cortisoneMemory dysfunctionParietal lobe
2019
PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes
Bini J, Sanchez-Rangel E, Gallezot JD, Naganawa M, Nabulsi N, Lim K, Najafzadeh S, Shirali A, Ropchan J, Matuskey D, Huang Y, Herold K, Harris PE, Sherwin RS, Carson RE, Cline GW. PET Imaging of Pancreatic Dopamine D2 and D3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes. Journal Of Nuclear Medicine 2019, 61: 570-576. PMID: 31601695, PMCID: PMC7198375, DOI: 10.2967/jnumed.119.234013.Peer-Reviewed Original ResearchConceptsT1DM individualsHealthy controlsDopamine DOutcome measuresAcute C-peptide responseSUVR-1Type 1 diabetes mellitusPET/CT scanningDuration of diabetesMaximal glycemic potentiationC-peptide responseClinical outcome measuresInsulin secretory capacityRoutine clinical measuresD3 receptor densityΒ-cell functionC-peptide releaseQuantitative PET measuresΒ-cell massDynamic PET scansQuantitative outcome measuresAgonist PET radioligandDiabetes mellitusReceptor agonistInsulin antibodiesFirst in-human PET study and kinetic evaluation of [18F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1
Bhatt S, Nabulsi NB, Li S, Cai Z, Matuskey D, Bini J, Najafzadeh S, Kapinos M, Ropchan JR, Carson RE, Cosgrove KP, Huang Y, Hillmer AT. First in-human PET study and kinetic evaluation of [18F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1. Cerebrovascular And Brain Metabolism Reviews 2019, 40: 695-704. PMID: 30895878, PMCID: PMC7168798, DOI: 10.1177/0271678x19838633.Peer-Reviewed Original Research
2018
Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging
Cline GW, Naganawa M, Chen L, Chidsey K, Carvajal-Gonzalez S, Pawlak S, Rossulek M, Zhang Y, Bini J, McCarthy TJ, Carson RE, Calle RA. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia 2018, 61: 2598-2607. PMID: 29721633, DOI: 10.1007/s00125-018-4624-0.Peer-Reviewed Original ResearchConceptsVesicular monoamine transporter type 2Type 2 diabetesBeta-cell massHealthy obese volunteersStandardised uptake value ratioBeta-cell functionTest-retest variabilityPancreas headTracer uptakeSUVR-1Type 2 diabetes mellitusType 2 diabetic participantsBeta-cell capacityConclusions/interpretationTheC-peptide AUCImpaired glucose toleranceType 2 diabetes pathophysiologyCell functionDeficient insulin secretionAcute insulin responsePancreas of humansUptake value ratioC-peptide releasePancreatic polypeptide cellsTransporter type 2Evaluation of PET Brain Radioligands for Imaging Pancreatic β-Cell Mass: Potential Utility of 11C-(+)-PHNO
Bini J, Naganawa M, Nabulsi N, Huang Y, Ropchan J, Lim K, Najafzadeh S, Herold KC, Cline GW, Carson RE. Evaluation of PET Brain Radioligands for Imaging Pancreatic β-Cell Mass: Potential Utility of 11C-(+)-PHNO. Journal Of Nuclear Medicine 2018, 59: 1249-1254. PMID: 29371405, PMCID: PMC6071501, DOI: 10.2967/jnumed.117.197285.Peer-Reviewed Original ResearchConceptsT1DM subjectsΒ-cell massHealthy controlsΒ-cellsAbdominal organsType 1 diabetes mellitusC-peptide levelsHealthy control subjectsPancreatic β-cell massDeficient insulin secretionReceptor agonist radioligandPET/CTIslets of LangerhansDynamic PET/CTCommon cellular receptorPancreatic bindingDiabetes mellitusDiabetic subjectsControl subjectsNeurologic tissueC-peptideInsulin secretionMean SUVAgonist radioligandDiabetes therapy
2015
Attenuation Correction for Magnetic Resonance Coils in Combined PET/MR Imaging A Review
Eldib M, Bini J, Faul DD, Oesingmann N, Tsoumpas C, Fayad ZA. Attenuation Correction for Magnetic Resonance Coils in Combined PET/MR Imaging A Review. PET Clinics 2015, 11: 151-160. PMID: 26952728, PMCID: PMC4785842, DOI: 10.1016/j.cpet.2015.10.004.Peer-Reviewed Original ResearchMarkerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging
Eldib M, Bini J, Robson PM, Calcagno C, Faul DD, Tsoumpas C, Fayad ZA. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging. Physics In Medicine And Biology 2015, 60: 4705-4717. PMID: 26020273, PMCID: PMC4495953, DOI: 10.1088/0031-9155/60/12/4705.Peer-Reviewed Original ResearchMeSH KeywordsArtifactsCarotid Artery DiseasesFemaleFluorodeoxyglucose F18HumansImage EnhancementImage Interpretation, Computer-AssistedMagnetic Resonance ImagingMalePatient PositioningPhantoms, ImagingPositron-Emission TomographyRadiopharmaceuticalsSoftwareTissue DistributionTomography, X-Ray ComputedSimultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction
Bini J, Eldib M, Robson PM, Calcagno C, Fayad ZA. Simultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction. The International Journal Of Cardiovascular Imaging 2015, 32: 61-71. PMID: 25898892, PMCID: PMC4618272, DOI: 10.1007/s10554-015-0661-7.Peer-Reviewed Original Research
2014
Improvement of Attenuation Correction in Time-of-Flight PET/MR Imaging with a Positron-Emitting Source
Mollet P, Keereman V, Bini J, Izquierdo-Garcia D, Fayad ZA, Vandenberghe S. Improvement of Attenuation Correction in Time-of-Flight PET/MR Imaging with a Positron-Emitting Source. Journal Of Nuclear Medicine 2014, 55: 329-336. PMID: 24434291, PMCID: PMC4010111, DOI: 10.2967/jnumed.113.125989.Peer-Reviewed Original Research
2011
Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance
Bini J, Spain J, Nehal K, Hazelwood V, DiMarzio C, Rajadhyaksha M. Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance. Journal Of Biomedical Optics 2011, 16: 076008-076008-8. PMID: 21806269, PMCID: PMC3154052, DOI: 10.1117/1.3596742.Peer-Reviewed Original Research
2009
Merkel Cell Polyomavirus Expression in Merkel Cell Carcinomas and Its Absence in Combined Tumors and Pulmonary Neuroendocrine Carcinomas
Busam KJ, Jungbluth AA, Rekthman N, Coit D, Pulitzer M, Bini J, Arora R, Hanson NC, Tassello JA, Frosina D, Moore P, Chang Y. Merkel Cell Polyomavirus Expression in Merkel Cell Carcinomas and Its Absence in Combined Tumors and Pulmonary Neuroendocrine Carcinomas. The American Journal Of Surgical Pathology 2009, 33: 1378-1385. PMID: 19609205, PMCID: PMC2932664, DOI: 10.1097/pas.0b013e3181aa30a5.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overBiomarkers, TumorCarcinoma, Merkel CellCarcinoma, Squamous CellCell CountDNA, NeoplasmDNA, ViralFemaleFluorescent Antibody Technique, DirectHumansKeratin-20Lung NeoplasmsLymph NodesMaleMiddle AgedPolymerase Chain ReactionPolyomavirusPolyomavirus InfectionsSkin NeoplasmsTissue Array AnalysisTumor Virus InfectionsConceptsMerkel cell carcinomaPulmonary neuroendocrine carcinomasMerkel cell polyomavirusMajority of MCCsNeuroendocrine carcinomaCell carcinomaPolymerase chain reactionDiagnosis of MCCPrimary cutaneous neuroendocrine carcinomaCutaneous neuroendocrine carcinomaSquamous cell carcinomaChain reactionFrozen tumor samplesMCV T antigenQuantitative polymerase chain reactionCytokeratin 20Frozen tissue samplesTissue microarrayCombined tumorCarcinomaNeuroendocrine phenotypeLarge T antigen geneImmunohistochemistryTumor samplesCM2B4