2020
Layer Embedding Analysis in Convolutional Neural Networks for Improved Probability Calibration and Classification
Zhang F, Dvornek N, Yang J, Chapiro J, Duncan J. Layer Embedding Analysis in Convolutional Neural Networks for Improved Probability Calibration and Classification. IEEE Transactions On Medical Imaging 2020, 39: 3331-3342. PMID: 32356739, PMCID: PMC7606489, DOI: 10.1109/tmi.2020.2990625.Peer-Reviewed Original ResearchConceptsConvolutional neural networkNeural networkClassification taskProbability calibrationTissue classification tasksImage representationBaseline methodsPublic datasetsModel performanceRandom forest modelNetworkBetter performanceForest modelDatasetClassificationTaskCT imagesImagesOriginal model outputMR imagesModel outputInstitutional datasetPerformanceEmbeddingOutput
2018
Learning Generalizable Recurrent Neural Networks from Small Task-fMRI Datasets
Dvornek NC, Yang D, Ventola P, Duncan JS. Learning Generalizable Recurrent Neural Networks from Small Task-fMRI Datasets. Lecture Notes In Computer Science 2018, 11072: 329-337. PMID: 30873514, PMCID: PMC6411297, DOI: 10.1007/978-3-030-00931-1_38.Peer-Reviewed Original ResearchConceptsRecurrent neural networkNeural networkTask fMRI datasetsMedical image analysis problemsSuch deep networksImage analysis problemsTask fMRI scanTypical control subjectsDeep networkDeep learningTraining lossSmall datasetsLarge datasetsNumber of approachesAutism spectrum disorderAnalysis problemDatasetNetworkTraining runsImage analysisGeneralizable modelNon-imaging variablesSpectrum disorderFMRI analysisModel performance