2022
Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation
You C, Xiang J, Su K, Zhang X, Dong S, Onofrey J, Staib L, Duncan J. Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation. Lecture Notes In Computer Science 2022, 13573: 3-16. PMID: 37415747, PMCID: PMC10323962, DOI: 10.1007/978-3-031-18523-6_1.Peer-Reviewed Original ResearchIncremental learningMedical image segmentation tasksMulti-site datasetImage segmentation tasksMedical image segmentationProstate MRI SegmentationComputation resourcesMedical datasetsSegmentation taskImage segmentationSegmentation frameworkEmbedding featuresBenchmark datasetsMRI segmentationTraining dataTarget domainLearning approachPractical deploymentDomain-specific expertiseCompetitive performanceDatasetTraining schemePrior workSegmentationSingle model
2020
Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results
Li X, Gu Y, Dvornek N, Staib LH, Ventola P, Duncan JS. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Medical Image Analysis 2020, 65: 101765. PMID: 32679533, PMCID: PMC7569477, DOI: 10.1016/j.media.2020.101765.Peer-Reviewed Original ResearchConceptsDeep learning modelsFederated LearningPrivacy-preserving federated learningLearning modelFederated learning approachPrivacy-preserving strategyDomain adaptation methodsData analysis problemsLocal model weightsIterative optimization algorithmEntity dataDomain adaptationLearning approachLearning formulationMulti-site dataRandomization mechanismAdaptation methodNeuroimage analysisDifferent tasksModel weightsModel optimizationOptimization algorithmPrivate informationTraining strategyAnalysis problem