2024
Mine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels
You C, Dai W, Liu F, Min Y, Dvornek N, Li X, Clifton D, Staib L, Duncan J. Mine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels. IEEE Transactions On Pattern Analysis And Machine Intelligence 2024, 46: 11136-11151. PMID: 39269798, DOI: 10.1109/tpami.2024.3461321.Peer-Reviewed Original ResearchMedical image segmentationImage segmentationMedical image segmentation frameworkContext of medical image segmentationLong-tailed class distributionStrong data augmentationsIntra-class variationsSemi-supervised settingData imbalance issueImage segmentation frameworkMedical image analysisMedical image dataSupervision signalsContrastive learningBenchmark datasetsUnsupervised mannerLabel setsData augmentationSegmentation frameworkDomain expertisePseudo-codeImbalance issueModel trainingMedical imagesSegmentation model
2023
Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective.
You C, Dai W, Min Y, Liu F, Clifton D, Zhou S, Staib L, Duncan J. Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective. Advances In Neural Information Processing Systems 2023, 36: 9984-10021. PMID: 38813114, PMCID: PMC11136570.Peer-Reviewed Original ResearchMedical image segmentationContrastive learningImage segmentationSemi-supervised medical image segmentationSemi-supervised contrastive learningSelf-supervised objectiveSemantic segmentation datasetsSemi-supervised methodGround-truth labelsQuality of visual representationSafety-critical tasksSegmentation datasetTail classesSegmentation taskLabel setsTruth labelsCL frameworkNegative examplesModel collapseVariance-reductionVariance-reduction techniquesVisual representationTaskLearningPairs of samples
2022
Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation
You C, Xiang J, Su K, Zhang X, Dong S, Onofrey J, Staib L, Duncan J. Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation. Lecture Notes In Computer Science 2022, 13573: 3-16. PMID: 37415747, PMCID: PMC10323962, DOI: 10.1007/978-3-031-18523-6_1.Peer-Reviewed Original ResearchIncremental learningMedical image segmentation tasksMulti-site datasetImage segmentation tasksMedical image segmentationProstate MRI SegmentationComputation resourcesMedical datasetsSegmentation taskImage segmentationSegmentation frameworkEmbedding featuresBenchmark datasetsMRI segmentationTraining dataTarget domainLearning approachPractical deploymentDomain-specific expertiseCompetitive performanceDatasetTraining schemePrior workSegmentationSingle modelSimCVD: Simple Contrastive Voxel-Wise Representation Distillation for Semi-Supervised Medical Image Segmentation
You C, Zhou Y, Zhao R, Staib L, Duncan JS. SimCVD: Simple Contrastive Voxel-Wise Representation Distillation for Semi-Supervised Medical Image Segmentation. IEEE Transactions On Medical Imaging 2022, 41: 2228-2237. PMID: 35320095, PMCID: PMC10325835, DOI: 10.1109/tmi.2022.3161829.Peer-Reviewed Original ResearchConceptsMedical image segmentationImage segmentationSemi-supervised medical image segmentationRobust Medical Image SegmentationMedical image analysisUnsupervised training strategyAtrial Segmentation ChallengeLearning-based approachMedical image synthesisAverage Dice scoreSemi-supervised approachPair-wise similarityContrastive objectiveData augmentationSegmentation challengePopular datasetsDice scoreSemantic informationDistillation frameworkSegmentation accuracyDownstream tasksImage synthesisPrevious best resultSupervised counterpartMedical data
2020
Sparse Data–Driven Learning for Effective and Efficient Biomedical Image Segmentation
Onofrey JA, Staib LH, Huang X, Zhang F, Papademetris X, Metaxas D, Rueckert D, Duncan JS. Sparse Data–Driven Learning for Effective and Efficient Biomedical Image Segmentation. Annual Review Of Biomedical Engineering 2020, 22: 1-27. PMID: 32169002, PMCID: PMC9351438, DOI: 10.1146/annurev-bioeng-060418-052147.Peer-Reviewed Original Research
2004
3D image segmentation of deformable objects with joint shape-intensity prior models using level sets
Yang J, Duncan JS. 3D image segmentation of deformable objects with joint shape-intensity prior models using level sets. Medical Image Analysis 2004, 8: 285-294. PMID: 15450223, PMCID: PMC2832842, DOI: 10.1016/j.media.2004.06.008.Peer-Reviewed Original ResearchConceptsImage segmentationImage gray levelsPoint distribution modelObject shapeGray levelsExplicit point correspondencesImage gray level valuesGray level valuesMedical imagesInput imageTraining imagesGray-level variationsMultidimensional dataTraining phaseDeformable objectsPoint correspondencesSegmentationMap shapePrior knowledgePrior informationLevel set functionPrior modelEstimation modelImagesObjectsJoint Prior Models of Neighboring Objects for 3D Image Segmentation
Yang J, Duncan JS. Joint Prior Models of Neighboring Objects for 3D Image Segmentation. 2015 IEEE Conference On Computer Vision And Pattern Recognition (CVPR) 2004, 1: i-314-i-319. PMID: 20448825, PMCID: PMC2864486, DOI: 10.1109/cvpr.2004.1315048.Peer-Reviewed Original ResearchImage segmentationMultiple objectsNeighboring objectsVariation of objectsShape prior modelPrior modelMedical imagesInput imageTraining imagesPosteriori estimation modelMultidimensional dataTraining phasePoint correspondencesSegmentationMap shapeReference objectPrior knowledgePrior informationLevel set functionDistance functionEstimation modelObjectsImagesDifficult objectsJoint probability distribution
2003
Combinative multi-scale level set framework for echocardiographic image segmentation
Lin N, Yu W, Duncan JS. Combinative multi-scale level set framework for echocardiographic image segmentation. Medical Image Analysis 2003, 7: 529-537. PMID: 14561556, DOI: 10.1016/s1361-8415(03)00035-5.Peer-Reviewed Original ResearchConceptsLevel set frameworkShape knowledgeTedious human effortsSet frameworkEchocardiographic image sequencesLine training processEchocardiographic image segmentationUltrasound imagesImage segmentationAutomatic segmentationHuman effortImage sequencesBoundary detectionCoarse boundariesEdge featuresTraining processShape templatePoor featuresEndocardial boundarySegmentationContour evolutionRegion homogeneityImagesExperimental resultsCoarse scale