2024
Mine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels
You C, Dai W, Liu F, Min Y, Dvornek N, Li X, Clifton D, Staib L, Duncan J. Mine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels. IEEE Transactions On Pattern Analysis And Machine Intelligence 2024, 46: 11136-11151. PMID: 39269798, DOI: 10.1109/tpami.2024.3461321.Peer-Reviewed Original ResearchMedical image segmentationImage segmentationMedical image segmentation frameworkContext of medical image segmentationLong-tailed class distributionStrong data augmentationsIntra-class variationsSemi-supervised settingData imbalance issueImage segmentation frameworkMedical image analysisMedical image dataSupervision signalsContrastive learningBenchmark datasetsUnsupervised mannerLabel setsData augmentationSegmentation frameworkDomain expertisePseudo-codeImbalance issueModel trainingMedical imagesSegmentation model
2023
Unsupervised Domain Adaptation by Cross-Prototype Contrastive Learning for Medical Image Segmentation
Cai Z, Xin J, Dong S, You C, Shi P, Zeng T, Zhang J, Onofrey J, Zheng N, Duncan J. Unsupervised Domain Adaptation by Cross-Prototype Contrastive Learning for Medical Image Segmentation. 2023, 00: 819-824. DOI: 10.1109/bibm58861.2023.10386055.Peer-Reviewed Original ResearchUnsupervised domain adaptationDistribution alignmentDomain adaptationContrastive learningUnsupervised domain adaptation methodsMedical image segmentation tasksDomain distribution alignmentGlobal distribution alignmentContrastive learning methodDomain adaptation performanceIntra-class distancePixel-level featuresImage segmentation tasksInter-class distancePublic cardiac datasetsCategory centroidDiscrimination of classesClass prototypesSegmentation taskSource domainTarget domainCardiac datasetsLearning methodsGlobal prototypesCentroid alignmentRethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective.
You C, Dai W, Min Y, Liu F, Clifton D, Zhou S, Staib L, Duncan J. Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective. Advances In Neural Information Processing Systems 2023, 36: 9984-10021. PMID: 38813114, PMCID: PMC11136570.Peer-Reviewed Original ResearchMedical image segmentationContrastive learningImage segmentationSemi-supervised medical image segmentationSemi-supervised contrastive learningSelf-supervised objectiveSemantic segmentation datasetsSemi-supervised methodGround-truth labelsQuality of visual representationSafety-critical tasksSegmentation datasetTail classesSegmentation taskLabel setsTruth labelsCL frameworkNegative examplesModel collapseVariance-reductionVariance-reduction techniquesVisual representationTaskLearningPairs of samples
2021
Anatomy-Constrained Contrastive Learning for Synthetic Segmentation Without Ground-Truth
Zhou B, Liu C, Duncan J. Anatomy-Constrained Contrastive Learning for Synthetic Segmentation Without Ground-Truth. Lecture Notes In Computer Science 2021, 12901: 47-56. DOI: 10.1007/978-3-030-87193-2_5.Peer-Reviewed Original ResearchSegmentation networkContrastive learningManual segmentationSuperior segmentation performanceObject of interestSynthetic SegmentationManual effortSegmentation performanceTraining dataUnsupervised adaptationImaging dataSource modalitySegmentationNetworkPrevious methodsLearningLarge amountSuccessful applicationPET imaging dataImagesObjectsCodeDataNew imaging modality