2022
Identifying the individual metabolic abnormities from a systemic perspective using whole-body PET imaging
Sun T, Wang Z, Wu Y, Gu F, Li X, Bai Y, Shen C, Hu Z, Liang D, Liu X, Zheng H, Yang Y, El Fakhri G, Zhou Y, Wang M. Identifying the individual metabolic abnormities from a systemic perspective using whole-body PET imaging. European Journal Of Nuclear Medicine And Molecular Imaging 2022, 49: 2994-3004. PMID: 35567627, PMCID: PMC9106794, DOI: 10.1007/s00259-022-05832-7.Peer-Reviewed Original ResearchMeSH KeywordsCOVID-19Fluorodeoxyglucose F18HumansLung NeoplasmsPositron-Emission TomographyWhole Body ImagingConceptsPET imagingNormal control databaseTotal-body imagingWhole-body PET imagingNon-invasive modalitySUV measurementsGastrointestinal bleedingMetabolic abnormitiesSystem abnormalitiesTotal bodyLung cancerHealthy subjectsMetabolic dysfunctionFocal lesionsCOVID-19 diseaseGlucose metabolismControl databaseSUV imagesPatientsAbnormal networkBiological mechanismsDiseasePETMetabolic connectivity
2021
A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET
Xue S, Guo R, Bohn K, Matzke J, Viscione M, Alberts I, Meng H, Sun C, Zhang M, Zhang M, Sznitman R, El Fakhri G, Rominger A, Li B, Shi K. A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET. European Journal Of Nuclear Medicine And Molecular Imaging 2021, 49: 1843-1856. PMID: 34950968, PMCID: PMC9015984, DOI: 10.1007/s00259-021-05644-1.Peer-Reviewed Original ResearchMeSH KeywordsArtificial IntelligenceBrainDeep LearningFluorodeoxyglucose F18HumansImage Processing, Computer-AssistedPositron-Emission TomographyConceptsStructural similarity index measurePET imagingGenerative adversarial networkNuclear medicine physiciansArtificial intelligenceLow-dose scansBaseline image qualityDose reductionConditional generative adversarial networkClinical imaging assessmentSimilarity index measureDiversity of clinical practiceDevelopment of AI technologyDeep learning developmentDose acquisitionImaging assessmentMedicine physiciansImage qualityResultsThe improvementPatientsClinical acceptanceClinical practiceClinical settingAdversarial networkLow-dose PETSynthesis and Characterization of [18F]JNJ-46356479 as the First 18F-Labeled PET Imaging Ligand for Metabotropic Glutamate Receptor 2
Yuan G, Guehl N, Zheng B, Qu X, Moon S, Dhaynaut M, Shoup T, Afshar S, Kang H, Zhang Z, El Fakhri G, Normandin M, Brownell A. Synthesis and Characterization of [18F]JNJ-46356479 as the First 18F-Labeled PET Imaging Ligand for Metabotropic Glutamate Receptor 2. Molecular Imaging And Biology 2021, 23: 527-536. PMID: 33559035, PMCID: PMC8277681, DOI: 10.1007/s11307-021-01586-0.Peer-Reviewed Original ResearchConceptsNon-human primatesIn vivo PET imaging studiesNucleus accumbensGlutamate receptor 2PET imaging ligandsImaging ligandsParietal cortexBrain regionsPET imaging studiesPET radioligandIn vivo PET imaging experimentsVolume of distributionMGluR2C57BL/6 J micePET imaging experimentsPET studiesBrainSprague-Dawley ratsAlzheimer's diseaseBrain permeabilityPre-treatment studyImaging studiesDisordersRat studiesReversible kineticsTotal-body dynamic PET/CT of micro-metastatic lymph node in a patient with lung cancer
Fu F, Li X, Wu Y, Xu J, Bai Y, Gao Y, Wang Z, Zhang W, Wei W, El Fakhri G, Shao F, Wang M. Total-body dynamic PET/CT of micro-metastatic lymph node in a patient with lung cancer. European Journal Of Nuclear Medicine And Molecular Imaging 2021, 48: 1678-1679. PMID: 33392715, DOI: 10.1007/s00259-020-05121-1.Peer-Reviewed Original Research
2020
Dependence of fluorodeoxyglucose (FDG) uptake on cell cycle and dry mass: a single-cell study using a multi-modal radiography platform
Sung Y, Tetrault M, Takahashi K, Ouyang J, Pratx G, Fakhri G, Normandin M. Dependence of fluorodeoxyglucose (FDG) uptake on cell cycle and dry mass: a single-cell study using a multi-modal radiography platform. Scientific Reports 2020, 10: 4280. PMID: 32152343, PMCID: PMC7062696, DOI: 10.1038/s41598-020-59515-0.Peer-Reviewed Original ResearchMeSH KeywordsCell CycleCell DivisionCell ProliferationFluorodeoxyglucose F18HeLa CellsHumansPositron-Emission TomographyRadiopharmaceuticalsSingle-Cell AnalysisConceptsCell divisionHeLa cellsDry massM phaseCell dry massCancer compared to normal tissuesCell cycle phasesHouse-keeping proteinsSingle-cell studiesSingle-cell levelIncreased dry massProliferation indexCell cycleG1 phaseProportion of cellsHigher glucose uptakeFluorodeoxyglucose uptakeGlucose uptakeHeLaUptake rate
2019
Body motion detection and correction in cardiac PET: Phantom and human studies
Sun T, Petibon Y, Han P, Ma C, Kim S, Alpert N, Fakhri G, Ouyang J. Body motion detection and correction in cardiac PET: Phantom and human studies. Medical Physics 2019, 46: 4898-4906. PMID: 31508827, PMCID: PMC6842053, DOI: 10.1002/mp.13815.Peer-Reviewed Original ResearchMeSH KeywordsArtifactsFluorodeoxyglucose F18HeartHumansImage Processing, Computer-AssistedMovementPhantoms, ImagingPositron-Emission TomographyConceptsList-mode dataMotion-compensated image reconstructionMotion correctionCenter of massPET list-mode dataMotion correction methodMotion detectionMotion estimationImage reconstructionPatient body motionDegrade image qualityNonrigid registrationImage qualityMotion transformationCoincident distributionBody motion detectionCardiac positron emission tomographyBack-projection techniqueCovariance matrixImage volumesBody motionPositron emission tomographyBack-projectionReference framePhantomAttenuation correction using 3D deep convolutional neural network for brain 18F-FDG PET/MR: Comparison with Atlas, ZTE and CT based attenuation correction
Blanc-Durand P, Khalife M, Sgard B, Kaushik S, Soret M, Tiss A, Fakhri G, Habert M, Wiesinger F, Kas A. Attenuation correction using 3D deep convolutional neural network for brain 18F-FDG PET/MR: Comparison with Atlas, ZTE and CT based attenuation correction. PLOS ONE 2019, 14: e0223141. PMID: 31589623, PMCID: PMC6779234, DOI: 10.1371/journal.pone.0223141.Peer-Reviewed Original ResearchConceptsZero echo timeAC mapsAttenuation correctionPET attenuation correctionCT-based ACComputed tomographyAC methodPhoton attenuationZTE-ACInvestigation of suspected dementiaMR imagingBrain computed tomographyAtlas-ACBrain metabolismZTE-MRIConvolutional neural networkEcho timeHead atlasFDG-PET/MRPET imagingLow biasRegions-of-interestPatientsCorrectionNeural networkMR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging
Petibon Y, Sun T, Han P, Ma C, Fakhri G, Ouyang J. MR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging. Physics In Medicine And Biology 2019, 64: 195009. PMID: 31394518, PMCID: PMC7007962, DOI: 10.1088/1361-6560/ab39c2.Peer-Reviewed Original ResearchConceptsMR-based motion correctionRespiratory motion correctionMotion correctionImproved spatial resolutionReconstructed activity concentrationCardiac PET dataSpatial resolutionCoincidence eventsMR-basedPET imagingContrast-to-noise ratioCardiac PET imagingRespiratory phasesMC dataImprove image qualityMR acquisitionQuantitative accuracyCardiac PETPET dataActivity concentrationsMyocardium wallF-FDG PETDynamics studiesImage qualityMotion artifacts
2016
Validation of Bayesian analysis of compartmental kinetic models in medical imaging
Sitek A, Li Q, Fakhri G, Alpert N. Validation of Bayesian analysis of compartmental kinetic models in medical imaging. Physica Medica 2016, 32: 1252-1258. PMID: 27692754, PMCID: PMC5720163, DOI: 10.1016/j.ejmp.2016.09.010.Peer-Reviewed Original ResearchConceptsAccurate estimation of uncertaintyComputer simulationsMedical imagesPosterior distributionDistributed noiseTime series of imagesClosed-formSeries of imagesData setsKinetic parametersMarkov chain Monte Carlo methodsPosterior distributions of kinetic parametersNon-linear least squares methodAccurate estimationComputerLeast-squares methodKinetic modelEstimation of kinetic parametersF18-fluorodeoxyglucoseBayesian estimationImagesStatistical inferenceMonte Carlo methodEstimates of uncertaintyInformation
2015
Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging
Zhang X, Chen Y, Lim R, Huang C, Chebib I, Fakhri G. Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging. Magnetic Resonance Imaging 2015, 34: 276-279. PMID: 26523656, PMCID: PMC4761342, DOI: 10.1016/j.mri.2015.10.027.Peer-Reviewed Original ResearchConceptsSoft tissue sarcomasMagnetic resonance imagingHigh (18)F-FDG uptakeT2 hyperintense massMagnetic resonance spectroscopyNeoadjuvant radiotherapyPathological resultsTumor marginsTissue sarcomasImaging findingsPET/MRI scansPET scansRight thighRadiotherapyNormal tissuesEmission tomographyResonance imagingMetabolite profilesSarcomaPET/MRIChemoRTChemoradiationSynergistic rolePETSurgery
2014
4D numerical observer for lesion detection in respiratory‐gated PET
Lorsakul A, Li Q, Trott C, Hoog C, Petibon Y, Ouyang J, Laine A, Fakhri G. 4D numerical observer for lesion detection in respiratory‐gated PET. Medical Physics 2014, 41: 102504. PMID: 25281979, PMCID: PMC4281099, DOI: 10.1118/1.4895975.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsComputer SimulationFluorodeoxyglucose F18HumansImage Interpretation, Computer-AssistedLung DiseasesModels, BiologicalMonte Carlo MethodMotionPhantoms, ImagingPositron-Emission TomographyRadiopharmaceuticalsRegression AnalysisRespiratory-Gated Imaging TechniquesSignal-To-Noise RatioConceptsRespiratory-gated positron emission tomographyMotion-corrected imagesDetection signal-to-noise ratioLesion detection taskNumerical observationsLesion detection performanceSignal-to-noise ratioPositron emission tomography sinogramsSpherical lesionsHotelling observerMotion correction methodPositron emission tomographyGeant4 ApplicationTomographic EmissionChannelized Hotelling observerAnthropomorphic phantomScanner geometryOSEM algorithmMonte Carlo simulationsPET framesImprove lesion detectionLesion detectionSignal-to-noise ratio measurementsActivity distributionConventional 3D approachEffect of time‐of‐flight and point spread function modeling on detectability of myocardial defects in PET
Schaefferkoetter J, Ouyang J, Rakvongthai Y, Nappi C, El Fakhri G. Effect of time‐of‐flight and point spread function modeling on detectability of myocardial defects in PET. Medical Physics 2014, 41: 062502. PMID: 24877836, PMCID: PMC4032408, DOI: 10.1118/1.4875725.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratioDetection signal-to-noise ratioPoint spread functionObserver signal-to-noise ratioEffects of time-of-flightMyocardial defectsHuman observer performanceDefect detectionSlow convergenceTime-of-flight (TOFNon-PSFPostreconstruction smoothingFDG-PET dataTime-of-flightPSF reconstructionCombination of TOFNon-TOFIterationObserver performanceClinical practiceSpread functionReconstruction parametersReconstruction protocolsIterative methodDetectionRelative role of motion and PSF compensation in whole‐body oncologic PET‐MR imaging
Petibon Y, Huang C, Ouyang J, Reese T, Li Q, Syrkina A, Chen Y, Fakhri G. Relative role of motion and PSF compensation in whole‐body oncologic PET‐MR imaging. Medical Physics 2014, 41: 042503. PMID: 24694156, PMCID: PMC3971824, DOI: 10.1118/1.4868458.Peer-Reviewed Original ResearchConceptsPoint spread function modelRespiratory motionPoint spread functionPET-MR scannersPencil-beam navigator echoesPET-MRMeasurement of respiratory motionPSF modelRespiratory motion correctionDetector blur effectsModel respiratory motionLung-liver interfacePatient studiesLesion contrastSimultaneous PET-MRSource of image degradationWhole-body PET imagingPET reconstruction algorithmMoving lesionsPhantom experiment resultsPET eventsContrast recoveryNavigator echoesIterative reconstruction processMotion correction
2013
Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences
El Fakhri G, Trott C, Sitek A, Bonab A, Alpert N. Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences. Molecular Imaging And Biology 2013, 15: 666-674. PMID: 23636489, PMCID: PMC3812387, DOI: 10.1007/s11307-013-0631-1.Peer-Reviewed Original ResearchConceptsEmit gamma raysPositron emission tomographyNear-simultaneous imagingSingle-photon emissionBrain PET studiesGamma raysSingle-photon emission computed tomographyActivity distributionRaclopride studiesEmission computed tomographyPositron emission tomography radiopharmaceuticalsSimultaneous imagingD2 bindingFactor analysis of dynamic sequencesActivity estimationTime activity curvesRacloprideFDGRhesus monkeysEmission tomographyPET studiesActivation curveBrain metabolismEmissionSimulate human data
2011
Impact of Time-of-Flight PET on Whole-Body Oncologic Studies: A Human Observer Lesion Detection and Localization Study
Surti S, Scheuermann J, Fakhri G, Daube-Witherspoon M, Lim R, Abi-Hatem N, Moussallem E, Benard F, Mankoff D, Karp J. Impact of Time-of-Flight PET on Whole-Body Oncologic Studies: A Human Observer Lesion Detection and Localization Study. Journal Of Nuclear Medicine 2011, 52: 712-719. PMID: 21498523, PMCID: PMC3104282, DOI: 10.2967/jnumed.110.086678.Peer-Reviewed Original ResearchConceptsLocalization receiver operating characteristicsTime-of-flight PETLong scan timesArea under the LROC curveScan timeFunction of scan timePatient sizeTime-of-flight (TOFLROC curveLow-uptake lesionsTOF imagesTOF kernelLesion detection taskTOF-PETWhole-body oncologyLesion detection performanceScanner fieldPhantom studyPatient body mass indexProbability of correct localizationLesion detectionSphere dataBody mass indexLarger patientsReceiver operating characteristicImprovement in Lesion Detection with Whole-Body Oncologic Time-of-Flight PET
Fakhri G, Surti S, Trott C, Scheuermann J, Karp J. Improvement in Lesion Detection with Whole-Body Oncologic Time-of-Flight PET. Journal Of Nuclear Medicine 2011, 52: 347-353. PMID: 21321265, PMCID: PMC3088884, DOI: 10.2967/jnumed.110.080382.Peer-Reviewed Original ResearchConceptsTime-of-flight PETTime-of-flightTOF-PETTime-of-flight reconstructionBody mass indexList-mode dataNon-TOF PETObserver signal-to-noise ratioOrdered-subset expectation maximizationMass indexNon-TOFLesion detectionLesion detection performanceSpherical lesionsFunction of body mass indexSignal-to-noise ratioScan timePatient studiesLesion visibilityArtificial lesionsLiver lesionsPatientsLesionsLesion locationLow lesions
2007
Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation
Mamede M, Fakhri G, Abreu-e-Lima P, Gandler W, Nosé V, Gerbaudo V. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation. Annals Of Nuclear Medicine 2007, 21: 553-562. PMID: 18092131, DOI: 10.1007/s12149-007-0040-0.Peer-Reviewed Original ResearchConceptsEndoscopic ultrasoundFDG-PETSurgical pathologyFDG-PET computed tomographyMaximum standardized uptake valueFluorodeoxyglucose positron emission tomographyUntreated esophageal carcinomaStandardized uptake valueMethodsThirty-four patientsPositive nonsignificant correlationFDG-PET imagingPre-operative estimationPositron emission tomographyAverage SUVNeoadjuvant therapyTumor involvementTumor lengthEsophageal carcinomaNoninvasive delineationEsophageal cancerUptake valueInferior extentObjectiveThe aimMethodsThirty-fourEmission tomographyImpact of Acquisition Geometry, Image Processing, and Patient Size on Lesion Detection in Whole-Body 18F-FDG PET
Fakhri G, Santos P, Badawi R, Holdsworth C, Van Den Abbeele A, Kijewski M. Impact of Acquisition Geometry, Image Processing, and Patient Size on Lesion Detection in Whole-Body 18F-FDG PET. Journal Of Nuclear Medicine 2007, 48: 1951-1960. PMID: 18006613, DOI: 10.2967/jnumed.108.007369.Peer-Reviewed Original ResearchConceptsAttenuation-weighted OSEMOrdered-subset expectation maximizationNoise equivalent countPhantom sizeBed positionCho SNRPatient sizeFourier rebinningAttenuation mapPET scannerLesion detectionMarginal detectionTransmission scanWhole-body (18)F-FDG PETAttenuation correctionWhole-body 18F-FDG PETHotelling observerScaling 2DSinogramReconstructed volumeDetection SNRPhantomSystematic improvementFBPScattering