2024
Exploring Backdoor Attacks in Off-the-Shelf Unsupervised Domain Adaptation for Securing Cardiac MRI-Based Diagnosis
Liu X, Xing F, Gaggin H, Kuo C, El Fakhri G, Woo J. Exploring Backdoor Attacks in Off-the-Shelf Unsupervised Domain Adaptation for Securing Cardiac MRI-Based Diagnosis. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2024, 00: 1-5. PMID: 39421190, PMCID: PMC11483644, DOI: 10.1109/isbi56570.2024.10635403.Peer-Reviewed Original ResearchUnsupervised domain adaptationTarget domain modelBackdoor attacksDomain adaptationTraining dataLabeled source domain dataSusceptible to backdoor attacksAccurate pseudo labelsDomain modelSource domain dataPatient data privacyTarget training dataOff-the-shelfPseudo-labelsData privacySource domainMulti-vendorRandom initializationTraining phaseDomain dataDiagnosis modelTarget modelMulti-diseaseAttacksAuxiliary model
2019
Computational-efficient cascaded neural network for CT image reconstruction
Wu D, Kim K, Fakhri G, Li Q. Computational-efficient cascaded neural network for CT image reconstruction. Progress In Biomedical Optics And Imaging 2019, 10948: 109485z-109485z-6. DOI: 10.1117/12.2511526.Peer-Reviewed Original ResearchCascaded neural networkNeural networkImage reconstructionCT image reconstructionMemory consumptionDevelopment of deep learningDeep artificial neural networksState-of-the-artMedical image reconstructionReduce memory consumptionImage reconstruction qualitySparse-view samplingTraining ground truthUnrolling networkImage priorsImage quality improvementImage patchesReconstruction qualityDeep learningArtificial neural networkImage domainUndersampled projectionsTraining phaseTraining processParameter tuning