2014
MR‐based motion correction for PET imaging using wired active MR microcoils in simultaneous PET‐MR: Phantom study
Huang C, Ackerman J, Petibon Y, Brady T, Fakhri G, Ouyang J. MR‐based motion correction for PET imaging using wired active MR microcoils in simultaneous PET‐MR: Phantom study. Medical Physics 2014, 41: 041910. PMID: 24694141, PMCID: PMC3978416, DOI: 10.1118/1.4868457.Peer-Reviewed Original ResearchConceptsMotion correctionMR-based motion correctionStatic phantom dataPET quantitative accuracyPET-MRPET-MR scannersSimultaneous PET-MRHoffman phantomList-modePositron emission tomography imagingPET reconstructionBrain positron emission tomographyIterative PET reconstructionPhantom dataPhantomQuantitative accuracyIndependent noise realizationsImage contrastNoise realizationsHead motionPET dataPositron emission tomographyStatic referenceBrain PET scansMotion artifacts
2013
Simultaneous 99mTc‐MDP/123I‐MIBG tumor imaging using SPECT‐CT: Phantom and constructed patient studies
Rakvongthai Y, Fakhri G, Lim R, Bonab A, Ouyang J. Simultaneous 99mTc‐MDP/123I‐MIBG tumor imaging using SPECT‐CT: Phantom and constructed patient studies. Medical Physics 2013, 40: 102506. PMID: 24089927, PMCID: PMC3785531, DOI: 10.1118/1.4820977.Peer-Reviewed Original ResearchConceptsScatter correctionDual-radionuclideContrast recoveryPhantom studyAnthropomorphic torso phantomPatient studiesTumor uptakeTumor imagingSPECT projectionsTorso phantomMonte-CarloPhantom dataPhantomIterative reconstructionOSEMProjection dataDR dataIncrease patient throughputNoise realizationsSPECT-CTImage reconstructionClinical studiesTumorTumor projectionPoisson noise
2009
Quantitative simultaneous cardiac SPECT using MC‐JOSEM
Ouyang J, Zhu X, Trott C, Fakhri G. Quantitative simultaneous cardiac SPECT using MC‐JOSEM. Medical Physics 2009, 36: 602-611. PMID: 19292000, PMCID: PMC2673670, DOI: 10.1118/1.3063544.Peer-Reviewed Original ResearchConceptsMC-JOSEMEnergy windowWater-filled torso phantomScatter correctionPhotopeak energy windowStandard OSEMCardiac SPECT imagingActivity concentration ratioIterative reconstruction algorithmReconstruction algorithmMyocardium wallTorso phantomActivity estimationDetector responseEmission energyBackground compartmentPhantom dataCardiac SPECTActivity distributionRest/stress imagingScatteringCases of patientsOSEMChest painCardiac protocols
2002
Optimization of Ga‐67 imaging for detection and estimation tasks: Dependence of imaging performance on spectral acquisition parameters
Fakhri G, Moore S, Kijewski M. Optimization of Ga‐67 imaging for detection and estimation tasks: Dependence of imaging performance on spectral acquisition parameters. Medical Physics 2002, 29: 1859-1866. PMID: 12201433, DOI: 10.1118/1.1493214.Peer-Reviewed Original ResearchConceptsIdeal signal-to-noise ratioEnergy windowSignal-to-noise ratioMonte Carlo programDetection of spheresTorso phantomPhantom acquisitionsSphere of radiusEstimation taskPhantom dataLower-energyGa-67 imagingPhantomAcquisition parametersActivity concentrationsSpectral acquisition parametersGa-67Sphere sizeEnergyPhotopeakTumor imagingOptimal windowTaskClinicMonte
2001
Optimization of Ga-67 Imaging for Detection and Estimation Tasks: Dependence of Imaging Performance on Choice of Energy Windows
Fakhri G, Moore S, Kijewski M. Optimization of Ga-67 Imaging for Detection and Estimation Tasks: Dependence of Imaging Performance on Choice of Energy Windows. 2001, 3: 1355-1357. DOI: 10.1109/nssmic.2001.1008588.Peer-Reviewed Original ResearchEnergy windowSignal-to-noise ratioMonte Carlo programDetection of spheresIdeal signal-to-noise ratioTorso phantomEstimation taskDetection signal-to-noise ratioPhantom acquisitionsSphere of radiusPhantom dataLower-energyPhotopeakImaging performancePhantomGa-67Detection metricsGa-67 imagingSphere sizeOptimal window widthWindow widthEnergyTaskQuantitative tasksOptimal window