2023
Imaging Performance of the Fully Assembled Ultra-High Resolution (UHR) Brain PET scanner
Loignon-Houle F, Toussaint M, Beaudoin J, Gaudreault M, Doyon V, Leroux J, Auger E, Thibaudeau C, Arpin L, Croteau E, Espinosa-Bentancourt E, Samson A, Bouchard J, Espagnet R, Viscogliosi N, Pepin C, Labrecque V, Paulin C, Marin T, Ouyang J, Normandin M, Tétrault M, Michaud J, Fontaine R, Fakhri G, Lecomte R. Imaging Performance of the Fully Assembled Ultra-High Resolution (UHR) Brain PET scanner. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10338146.Peer-Reviewed Original ResearchBrain PET scannerUltra-high resolutionPET scannerPeak noise-equivalent count rateUltra Micro Hot Spot PhantomNoise-equivalent count rateAxial field-of-viewHot spot phantomHoffman brain phantomSmall-scale structuresCount rateBrain phantomContrast recoveryReadout schemeField of viewBrain PET imagingPhantomExcellent image qualityImaging performanceSpatial resolutionSmall structuresUltrahigh resolutionImage qualityPET imagingLarger rods
2022
Simulation study of a 50 ps panel TOF PET imager
Pestotnik R, Razdevšek G, Dolenec R, Fakhri G, Križan P, Majewski S, Studen A, Korpar S. Simulation study of a 50 ps panel TOF PET imager. Journal Of Instrumentation 2022, 17: c12010. DOI: 10.1088/1748-0221/17/12/c12010.Peer-Reviewed Original ResearchPET scannerGamma detectorGamma raysTime-of-flight positron emission tomographyState-of-the-art clinical PET scannersGamma detection efficiencyClinical PET scannerImaging large objectsImproved time resolutionArtifact-free imagesDifferent phantomsDetector arrangementTime-of-flightBiograph VisionImage quality parametersDetection efficiencyTiming accuracyTime resolutionDetectorFWHMPositron emission tomographyReconstructed imagesRaysPositron emission tomography imagingMultichannel system
2020
High Sensitivity and High Resolution Dynamic Brain-Dedicated TOF-DOI PET Scanner
Bläckberg L, Sanchez D, Borghi G, Ballabriga R, Sajedi S, Gómez S, Fakhri G, Mazzi A, Paternoster G, Majewski S, Gola A, Gascón D, Sabet H. High Sensitivity and High Resolution Dynamic Brain-Dedicated TOF-DOI PET Scanner. 2020, 00: 1-5. DOI: 10.1109/nss/mic42677.2020.9507837.Peer-Reviewed Original ResearchCoincidence time resolutionField of viewFWHM coincidence timing resolutionTime resolutionIntrinsic detector resolutionLow noise ASICsLYSO scintillator arrayScintillator arraySiPM arrayDetector conceptLYSO crystalsDetector volumeDetector resolutionPET detectorsSiPM signalsReduce image blurringDOI positionsHigh PDEPET scannerTiming jitterSimultaneous high resolutionScanner designTransport simulationsDetectorIntegrated light sensors
2017
Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease
Yang J, Hu C, Guo N, Dutta J, Vaina L, Johnson K, Sepulcre J, Fakhri G, Li Q. Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease. Scientific Reports 2017, 7: 13035. PMID: 29026139, PMCID: PMC5638902, DOI: 10.1038/s41598-017-13339-7.Peer-Reviewed Original ResearchConceptsQuantitative accuracy of PET imagesSpatial resolution of PET scannersAccuracy of PET imagesPET scannerBrain networksPET imagingQuantitative accuracyPartial volume effectsClassification performanceImage registrationPositron emission tomography quantificationPartial volume correctionSpatial resolutionJoint entropyVolume correctionNetwork structure analysisCorrected imagesVolume effectClinical datasetsParameter settingsPositron emission tomographyClassification testsCompare network propertiesNoise sensitivity
2015
PET Point Spread Function Modeling and Image Deblurring Using a PET/MRI Joint Entropy Prior
Dutta J, Fakhri G, Zhu X, Li Q. PET Point Spread Function Modeling and Image Deblurring Using a PET/MRI Joint Entropy Prior. 2015, 1423-1426. DOI: 10.1109/isbi.2015.7164143.Peer-Reviewed Original ResearchJoint entropyDe-blurring techniqueImage deblurringBrain WebQuantitative accuracy of PETImage spaceEfficient frameworkDeconvolution problemDeblurringCost functionPoint spread function modelPenalty functionHuman datasetsSpatial resolution capabilitiesPET scannerAmplifier noisePET imagingImagesConsistent with MRIQuantitative accuracyPartial volume effectsPhantomDatasetEntropyFunction model
2014
A Recommendation on How to Analyze In-Room PET for In Vivo Proton Range Verification Using a Distal PET Surface Method
Min C, Zhu X, Grogg K, Fakhri G, Winey B, Paganetti H. A Recommendation on How to Analyze In-Room PET for In Vivo Proton Range Verification Using a Distal PET Surface Method. Technology In Cancer Research & Treatment 2014, 14: 320-325. PMID: 25246517, PMCID: PMC4898041, DOI: 10.1177/1533034614547457.Peer-Reviewed Original ResearchConceptsIn vivo range verificationIn-room positron emission tomographyRange verificationBeam passageIn vivo proton range verificationIn-roomIn-room PET scannerPositron emission tomography activityProton beam rangeProton range verificationSingle-field treatmentsProton beam deliveryAverage range differencesBeam rangeBeam deliveryPET scannerRoot-mean-square deviationPositron emission tomographyBeamRange differencesLevel surfaceActive lineActivity levelsLocal variationsTreatment course
2013
Determination of elemental tissue composition following proton treatment using positron emission tomography
Cho J, Ibbott G, Gillin M, Gonzalez-Lepera C, Min C, Zhu X, Fakhri G, Paganetti H, Mawlawi O. Determination of elemental tissue composition following proton treatment using positron emission tomography. Physics In Medicine And Biology 2013, 58: 3815-3835. PMID: 23681070, PMCID: PMC3763743, DOI: 10.1088/0031-9155/58/11/3815.Peer-Reviewed Original ResearchConceptsIn-room PET scannerProton treatmentSOBP beamPET scannerMonte Carlo simulationsTissue elemental compositionComposite decay curvePristine Bragg peakProton treatment planningIn-roomElemental tissue compositionCarlo simulationsDecay curvesRange verificationMonoenergetic beamsBeam rangeProton dosePhantom sectionsEmitted positronsPositron emission tomographyProton therapyBragg peakPhantom compositionDelivered dosePositron emission tomography imagingClinical Application of In-Room Positron Emission Tomography for In Vivo Treatment Monitoring in Proton Radiation Therapy
Min C, Zhu X, Winey B, Grogg K, Testa M, Fakhri G, Bortfeld T, Paganetti H, Shih H. Clinical Application of In-Room Positron Emission Tomography for In Vivo Treatment Monitoring in Proton Radiation Therapy. International Journal Of Radiation Oncology • Biology • Physics 2013, 86: 183-189. PMID: 23391817, PMCID: PMC3640852, DOI: 10.1016/j.ijrobp.2012.12.010.Peer-Reviewed Original ResearchConceptsIn-room positron emission tomographyProton therapyIn-roomPositron emission tomography scanIn-room PET scannerPassive scattering proton therapyShapes of target volumesPositron emission tomographyMC predictionBeam range uncertaintiesMeasured PET imagesMonte CarloProton radiation therapyLocal elemental compositionBiological washoutScan timeTreatment headTreatment verificationRange uncertaintiesTarget volumePET scan timePET scannerPET systemComputed tomographyMC resultsMagnetic Resonance-Based Motion Correction for Positron Emission Tomography Imaging
Ouyang J, Li Q, Fakhri G. Magnetic Resonance-Based Motion Correction for Positron Emission Tomography Imaging. Seminars In Nuclear Medicine 2013, 43: 60-67. PMID: 23178089, PMCID: PMC3508789, DOI: 10.1053/j.semnuclmed.2012.08.007.Peer-Reviewed Original ResearchConceptsMotion correctionClinical whole-body PET scannersMotion-corrected PET imagesWhole-body PET scannerPET motion correctionNonrigid image registration algorithmAcquired MR imagesRespiratory motionImage registration algorithmPET scannerSimultaneous PET/magnetic resonancePET reconstructionSimultaneous PET/MRPatient motionImage qualityIterative PET reconstructionPET/MR studiesPET/magnetic resonanceAttenuating mediaImage artifactsRegistration algorithmSpatial resolutionReconstruction algorithmPositron emission tomographyMR imaging techniques
2011
TH‐C‐BRB‐04: Reliability of Proton‐Nuclear Interaction Cross Section Data to Predict Proton‐Induced PET Images in Proton Therapy
España S, Zhu X, Daartz J, Fakhri G, Bortfeld T, Paganetti H. TH‐C‐BRB‐04: Reliability of Proton‐Nuclear Interaction Cross Section Data to Predict Proton‐Induced PET Images in Proton Therapy. Medical Physics 2011, 38: 3853-3854. DOI: 10.1118/1.3613509.Peer-Reviewed Original ResearchCross section valuesCross section dataProton beamSection valuesIn vivo range verification methodsReaction channelsSection dataMonte Carlo codeTissue-equivalent materialsHigh-resolution PET scannerMeasured PET imagesRange verificationCross sectional DataPET imagingProton therapyIsotope productionPET scannerPET isotopesActivity distributionTheoretical valuesPhantomProtonBeamCrossField irradiation
2010
SU‐GG‐J‐149: Feasibility of In‐Room PET Imaging for in Vivo Proton Beam Range Verification
España S, Zhu X, Daartz J, Liebsch N, Fakhri G, Bortfeld T, Paganetti H. SU‐GG‐J‐149: Feasibility of In‐Room PET Imaging for in Vivo Proton Beam Range Verification. Medical Physics 2010, 37: 3180-3180. DOI: 10.1118/1.3468372.Peer-Reviewed Original ResearchRange verificationIn-roomProton therapyIn vivo range verificationProton beam range verificationPassive scattering proton therapyBeam range verificationIn-room measurementsOff-line protocolsFalloff positionsBiological washoutTreatment couchCount ratePET imagingTreatment positionPET scannerAttenuation correctionTreatment roomPET scansCo-registration accuracyCT numbersCalculated uncertaintiesPatient studiesWashout modelTreatment planning
2008
Sequential and simultaneous dual‐isotope brain SPECT: Comparison with PET for estimation and discrimination tasks in early Parkinson disease
Trott C, Fakhri G. Sequential and simultaneous dual‐isotope brain SPECT: Comparison with PET for estimation and discrimination tasks in early Parkinson disease. Medical Physics 2008, 35: 3343-3353. PMID: 18697558, PMCID: PMC2673561, DOI: 10.1118/1.2940605.Peer-Reviewed Original ResearchConceptsEnergy resolutionTime-of-flight PET scannerRealistic Monte Carlo simulationsAcquisition energy windowSequential SPECTSystem energy resolutionGamma cameraEnergy windowThree-head cameraPET scannerEmission energyMonte Carlo simulationsDual-isotope SPECTSimultaneous SPECTBrain PETTwo-headed cameraCarlo simulationsProdromal disease stagesIdentical physiological conditionsSpatial resolutionDiscrimination taskStriatal sizeActivity concentrationsEarly identification of PDCamera head
2007
Impact of Acquisition Geometry, Image Processing, and Patient Size on Lesion Detection in Whole-Body 18F-FDG PET
Fakhri G, Santos P, Badawi R, Holdsworth C, Van Den Abbeele A, Kijewski M. Impact of Acquisition Geometry, Image Processing, and Patient Size on Lesion Detection in Whole-Body 18F-FDG PET. Journal Of Nuclear Medicine 2007, 48: 1951-1960. PMID: 18006613, DOI: 10.2967/jnumed.108.007369.Peer-Reviewed Original ResearchConceptsAttenuation-weighted OSEMOrdered-subset expectation maximizationNoise equivalent countPhantom sizeBed positionCho SNRPatient sizeFourier rebinningAttenuation mapPET scannerLesion detectionMarginal detectionTransmission scanWhole-body (18)F-FDG PETAttenuation correctionWhole-body 18F-FDG PETHotelling observerScaling 2DSinogramReconstructed volumeDetection SNRPhantomSystematic improvementFBPScattering
2006
Optimizing Acquisition Parameters in TOF PET Scanners
Surti S, El-Fakhri G, Karp J. Optimizing Acquisition Parameters in TOF PET Scanners. 2006, 4: 2354-2359. DOI: 10.1109/nssmic.2006.354386.Peer-Reviewed Original ResearchNoise equivalent countCho SNRNon-TOF scannerScan timePET image qualityPatient dosageTime-of-flightSingles ratesOptimal acquisition parametersPET scannerTOF scannerDiameter cylinderIncreasing scan timeImage qualityReduce scan timeMeasure of signal-to-noise ratioSignal-to-noise ratioSpatial resolutionSNRAcquisition parametersLesion detectionLesionsTOFCylinderIncreased activity
2005
Realistic Monte Carlo PET Simulation with Pixellated Block Detectors, Light Sharing and Randoms Modeling
Guérin B, Fakhri G. Realistic Monte Carlo PET Simulation with Pixellated Block Detectors, Light Sharing and Randoms Modeling. 2005, 3: 1563-1567. DOI: 10.1109/nssmic.2005.1596617.Peer-Reviewed Original ResearchPET scannerBlock detectorsPhoton transportRandom coincidencesSimSET softwareMonte Carlo transport codeNEMA NU 2Model of photon transportEnergy weighted averageModel photon transportLight-sharingEnergy spectrumNU 2Light sharingTransport codeCrystal elementsMonte Carlo simulationsPET simulationsVery good agreementInteraction pointPET acquisitionDetection crystalAttenuation distributionDetectorCarlo simulations
2003
A Multi-Scanner Evaluation of PET Image Quality Using Phantom Studies
Surti S, Badawi R, Holdsworth C, Fakhri G, Kinahan P, Karp J. A Multi-Scanner Evaluation of PET Image Quality Using Phantom Studies. 2003, 4: 2425-2427. DOI: 10.1109/nssmic.2003.1352384.Peer-Reviewed Original ResearchSignal-to-noise ratioImage signal-to-noisePET image qualityImage signal-to-noise ratioDiameter phantomImage qualityPhantom diameterPET scannerNEC ratesPhantom studyMeasures of image qualitySignal-to-noisePhantomAcquisition modeFilter observerSpecific tasksAccurate measurementRate dropsSinogramScannerPreliminary resultsECAT