2022
Low-Dose Tau PET Imaging Based on Swin Restormer with Diagonally Scaled Self-Attention
Jang S, Lois C, Becker J, Thibault E, Li Y, Price J, Fakhri G, Li Q, Johnson K, Gong K. Low-Dose Tau PET Imaging Based on Swin Restormer with Diagonally Scaled Self-Attention. 2022, 00: 1-3. DOI: 10.1109/nss/mic44845.2022.10399169.Peer-Reviewed Original ResearchConvolutional neural networkSelf-attention mechanismSelf-attentionTransformer architectureComputer vision tasksLocal feature extractionLong-range informationVision tasksDenoising performanceSwin TransformerFeature extractionImage datasetsUNet structureNeural networkSwinComputational costReceptive fieldsImage qualityMap calculationNetwork structureArchitecturePET image qualityChannel dimensionsQuantitative evaluationDenoising
2018
Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images
Gong K, Yang J, Kim K, Fakhri G, Seo Y, Li Q. Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Physics In Medicine And Biology 2018, 63: 125011. PMID: 29790857, PMCID: PMC6031313, DOI: 10.1088/1361-6560/aac763.Peer-Reviewed Original ResearchConceptsU-Net structureU-NetModified U-net structureAttenuation correctionDeep neural network methodBrain PET imagingPET attenuationDeep neural networksPatient data setsAttenuation coefficientDixon-based methodNeural network methodData setsConvolution moduleNetwork inputNeural networkDixon MRPET/MR hybrid systemImage reconstructionPET imagingNetwork methodNetworkNetwork approachNetwork structureQuantification errors