2023
Successive Subspace Learning for Cardiac Disease Classification with Two-Phase Deformation Fields from Cine MRI
Liu X, Xing F, Gaggin H, Kuo C, El Fakhri G, Woo J. Successive Subspace Learning for Cardiac Disease Classification with Two-Phase Deformation Fields from Cine MRI. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2023, 00: 1-5. PMID: 38031559, PMCID: PMC10686280, DOI: 10.1109/isbi53787.2023.10230746.Peer-Reviewed Original ResearchTraining samplesCardiovascular disease classificationCNN-based approachDeep learning modelsCardiac disease classificationSubspace learningSSL modelClassification performanceDeep learningCardiac cine magnetic resonance imagingSubspace approximationSupervised regressionLearning modelsAccurate characterization resultsDisease classificationClassificationCardiac atlasLearningDeformation fieldEnd-systolic phaseFrameworkFeedforward designPerformanceTrainingSSLOutlier Robust Disease Classification via Stochastic Confidence Network
Lee K, Lee H, El Fakhri G, Sepulcre J, Liu X, Xing F, Hwang J, Woo J. Outlier Robust Disease Classification via Stochastic Confidence Network. Lecture Notes In Computer Science 2023, 14394: 80-90. DOI: 10.1007/978-3-031-47425-5_8.Peer-Reviewed Original ResearchDeep learningState-of-the-art modelsAccuracy of deep learningState-of-the-artMedical image dataMedical imaging modalitiesImage patchesIrrelevant patchesCategorical featuresPresence of outliersDL modelsConfidence networkConfidence predictionsClassifying outliersData samplesImage dataOutliersExperimental resultsDisease classificationImprove diagnostic performanceClassificationDiagnosing breast tumorsUltrasound imagingPerformanceImages
2021
Adversarial Unsupervised Domain Adaptation with Conditional and Label Shift: Infer, Align and Iterate
Liu X, Guo Z, Li S, Xing F, You J, Kuo C, Fakhri G, Woo J. Adversarial Unsupervised Domain Adaptation with Conditional and Label Shift: Infer, Align and Iterate. 2021, 00: 10347-10356. DOI: 10.1109/iccv48922.2021.01020.Peer-Reviewed Original ResearchUnsupervised domain adaptationDomain adaptationLabel shiftUnsupervised domain adaptation methodsAdversarial unsupervised domain adaptationAlternating optimization schemeUDA methodsTarget domainTraining stageOptimization schemeTesting stageExperimental resultsDistribution w.AdversaryP(x|yP(y|xDomainSchemeClassificationMethodInferenceAdaptation
2019
Graph Convolutional Neural Networks For Alzheimer’s Disease Classification
Song T, Roy Chowdhury S, Yang F, Jacobs H, El Fakhri G, Li Q, Johnson K, Dutta J. Graph Convolutional Neural Networks For Alzheimer’s Disease Classification. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2019, 00: 414-417. PMID: 31327984, PMCID: PMC6641559, DOI: 10.1109/isbi.2019.8759531.Peer-Reviewed Original ResearchGraph convolutional neural networkConvolutional neural networkNeural networkCapabilities of convolutional neural networksGraph-structured dataNon-Euclidean domainsClassification capability of convolutional neural networksVector machine classifierGraph-based toolsData representationAudio signalsClassification capabilityMachine classifierClassifierPerformance gapImage dataNetworkConnected graphStructural connectivity graphsDisease classificationClassificationBrain connectivity studiesEuclidean domainsComplex systemsGraph
2018
Deep networks in identifying CT brain hemorrhage
Helwan A, El-Fakhri G, Sasani H, Uzun Ozsahin D. Deep networks in identifying CT brain hemorrhage. Journal Of Intelligent & Fuzzy Systems 2018, Preprint: 1-1. DOI: 10.3233/jifs-172261.Peer-Reviewed Original ResearchConvolutional neural networkStacked autoencoderDeep networksMedical image classificationDeep learning algorithmsMedical expert's experienceImage classificationTraining timeLearning algorithmsNeural networkAutoencoderExpert experienceBrain CT imagesCT imagesNetworkHigher accuracyLess errorAlgorithmImagesAccuracyErrorClassification