2018
MR-based motion correction for cardiac PET parametric imaging: a simulation study
Guo R, Petibon Y, Ma Y, El Fakhri G, Ying K, Ouyang J. MR-based motion correction for cardiac PET parametric imaging: a simulation study. EJNMMI Physics 2018, 5: 3. PMID: 29388075, PMCID: PMC5792384, DOI: 10.1186/s40658-017-0200-9.Peer-Reviewed Original ResearchNon-motion-correctedPositron emission tomography-magnetic resonanceMR-based motion correctionRespiratory motionMotion correctionActivity distributionMotion correction methodRespiratory gatingPET sinogramsNoise levelCardiac gatingMRI simulationOne-tissue compartment modelNoise realizationsMC methodPET dataCardiac motionReduce motion blurParametric imagesIncreased noise levelConclusionsThis simulation studyArterial input functionPET imagingGateMyocardial regions
2015
National Electrical Manufacturers Association and Clinical Evaluation of a Novel Brain PET/CT Scanner
Grogg K, Toole T, Ouyang J, Zhu X, Normandin M, Li Q, Johnson K, Alpert N, Fakhri G. National Electrical Manufacturers Association and Clinical Evaluation of a Novel Brain PET/CT Scanner. Journal Of Nuclear Medicine 2015, 57: 646-652. PMID: 26697961, PMCID: PMC4818715, DOI: 10.2967/jnumed.115.159723.Peer-Reviewed Original ResearchConceptsNoise-equivalent count rateCount rateLoose cutsMaximum noise-equivalent counting rateSpatial resolutionDetector ringSilicon photomultipliersBrain phantomContrast recoveryAttenuation correctionPET/CT systemCrystal blockPET/CT scannerImage qualityRadial offsetNational Electrical Manufacturers AssociationActivity distributionUnique mobility capabilitiesAxial extentTransverse resolutionPhantomAxial resolutionActivity concentrationsHuman scansLayer 1 cm
2014
4D numerical observer for lesion detection in respiratory‐gated PET
Lorsakul A, Li Q, Trott C, Hoog C, Petibon Y, Ouyang J, Laine A, Fakhri G. 4D numerical observer for lesion detection in respiratory‐gated PET. Medical Physics 2014, 41: 102504. PMID: 25281979, PMCID: PMC4281099, DOI: 10.1118/1.4895975.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsComputer SimulationFluorodeoxyglucose F18HumansImage Interpretation, Computer-AssistedLung DiseasesModels, BiologicalMonte Carlo MethodMotionPhantoms, ImagingPositron-Emission TomographyRadiopharmaceuticalsRegression AnalysisRespiratory-Gated Imaging TechniquesSignal-To-Noise RatioConceptsRespiratory-gated positron emission tomographyMotion-corrected imagesDetection signal-to-noise ratioLesion detection taskNumerical observationsLesion detection performanceSignal-to-noise ratioPositron emission tomography sinogramsSpherical lesionsHotelling observerMotion correction methodPositron emission tomographyGeant4 ApplicationTomographic EmissionChannelized Hotelling observerAnthropomorphic phantomScanner geometryOSEM algorithmMonte Carlo simulationsPET framesImprove lesion detectionLesion detectionSignal-to-noise ratio measurementsActivity distributionConventional 3D approachTowards coronary plaque imaging using simultaneous PET-MR: a simulation study
Petibon Y, Fakhri G, Nezafat R, Johnson N, Brady T, Ouyang J. Towards coronary plaque imaging using simultaneous PET-MR: a simulation study. Physics In Medicine And Biology 2014, 59: 1203-1222. PMID: 24556608, PMCID: PMC4061607, DOI: 10.1088/0031-9155/59/5/1203.Peer-Reviewed Original ResearchMeSH KeywordsComputer SimulationCoronary AngiographyCoronary StenosisHumansImage Interpretation, Computer-AssistedImaging, Three-DimensionalMagnetic Resonance AngiographyModels, CardiovascularMultimodal ImagingPhantoms, ImagingPositron-Emission TomographyReproducibility of ResultsSensitivity and SpecificityConceptsSimultaneous PET-MRChannelized Hotelling observerAttenuation mapMotion correctionPET-MRFluorodeoxyglucose-positron emission tomography imagingRespiratory motion fieldsMotion correction methodCho SNRMotion correction techniqueAnthropomorphic phantomUncorrected reconstructionsRespiratory motionXCAT phantomCoronary plaque imagingMonte Carlo simulationsPET reconstructionXCATActivity distributionCardiac gatingNon-rigid registrationHotelling observerCarlo simulationsPlaque imagingPhantomMyocardial Defect Detection Using PET-CT: Phantom Studies
Mananga E, Fakhri G, Schaefferkoetter J, Bonab A, Ouyang J. Myocardial Defect Detection Using PET-CT: Phantom Studies. PLOS ONE 2014, 9: e88200. PMID: 24505429, PMCID: PMC3914931, DOI: 10.1371/journal.pone.0088200.Peer-Reviewed Original ResearchConceptsMyocardial defect detectionFiltered back projectionChannelized Hotelling observerPhantom studyActivity distributionSubset expectation maximizationDefect detectionCardiac PET studiesMyocardial defectsHotelling observerNoise levelBack-projectionPET-CTPhantomExpectation maximizationOP-OSEMReconstruction schemePET studiesOSEMDefectsNoise
2013
Direct reconstruction of cardiac PET kinetic parametric images using a preconditioned conjugate gradient approach
Rakvongthai Y, Ouyang J, Guerin B, Li Q, Alpert N, Fakhri G. Direct reconstruction of cardiac PET kinetic parametric images using a preconditioned conjugate gradient approach. Medical Physics 2013, 40: 102501. PMID: 24089922, PMCID: PMC3779266, DOI: 10.1118/1.4819821.Peer-Reviewed Original ResearchDual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences
El Fakhri G, Trott C, Sitek A, Bonab A, Alpert N. Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences. Molecular Imaging And Biology 2013, 15: 666-674. PMID: 23636489, PMCID: PMC3812387, DOI: 10.1007/s11307-013-0631-1.Peer-Reviewed Original ResearchConceptsEmit gamma raysPositron emission tomographyNear-simultaneous imagingSingle-photon emissionBrain PET studiesGamma raysSingle-photon emission computed tomographyActivity distributionRaclopride studiesEmission computed tomographyPositron emission tomography radiopharmaceuticalsSimultaneous imagingD2 bindingFactor analysis of dynamic sequencesActivity estimationTime activity curvesRacloprideFDGRhesus monkeysEmission tomographyPET studiesActivation curveBrain metabolismEmissionSimulate human dataProton Therapy Verification with PET Imaging
Zhu X, Fakhri G. Proton Therapy Verification with PET Imaging. Theranostics 2013, 3: 731-740. PMID: 24312147, PMCID: PMC3840408, DOI: 10.7150/thno.5162.Peer-Reviewed Original Research
2011
TH‐C‐BRB‐04: Reliability of Proton‐Nuclear Interaction Cross Section Data to Predict Proton‐Induced PET Images in Proton Therapy
España S, Zhu X, Daartz J, Fakhri G, Bortfeld T, Paganetti H. TH‐C‐BRB‐04: Reliability of Proton‐Nuclear Interaction Cross Section Data to Predict Proton‐Induced PET Images in Proton Therapy. Medical Physics 2011, 38: 3853-3854. DOI: 10.1118/1.3613509.Peer-Reviewed Original ResearchCross section valuesCross section dataProton beamSection valuesIn vivo range verification methodsReaction channelsSection dataMonte Carlo codeTissue-equivalent materialsHigh-resolution PET scannerMeasured PET imagesRange verificationCross sectional DataPET imagingProton therapyIsotope productionPET scannerPET isotopesActivity distributionTheoretical valuesPhantomProtonBeamCrossField irradiation
2009
Quantitative simultaneous cardiac SPECT using MC‐JOSEM
Ouyang J, Zhu X, Trott C, Fakhri G. Quantitative simultaneous cardiac SPECT using MC‐JOSEM. Medical Physics 2009, 36: 602-611. PMID: 19292000, PMCID: PMC2673670, DOI: 10.1118/1.3063544.Peer-Reviewed Original ResearchConceptsMC-JOSEMEnergy windowWater-filled torso phantomScatter correctionPhotopeak energy windowStandard OSEMCardiac SPECT imagingActivity concentration ratioIterative reconstruction algorithmReconstruction algorithmMyocardium wallTorso phantomActivity estimationDetector responseEmission energyBackground compartmentPhantom dataCardiac SPECTActivity distributionRest/stress imagingScatteringCases of patientsOSEMChest painCardiac protocols
2008
Improved activity estimation with MC‐JOSEM versus TEW‐JOSEM in SPECT
Ouyang J, Fakhri G, Moore S. Improved activity estimation with MC‐JOSEM versus TEW‐JOSEM in SPECT. Medical Physics 2008, 35: 2029-2040. PMID: 18561679, PMCID: PMC2673642, DOI: 10.1118/1.2907561.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsEquipment DesignImage Processing, Computer-AssistedIndium RadioisotopesLungModels, StatisticalMonte Carlo MethodPhantoms, ImagingRadiotherapy Planning, Computer-AssistedReproducibility of ResultsScattering, RadiationSoftwareTomography, Emission-Computed, Single-PhotonTomography, X-Ray ComputedConceptsMC-JOSEMWater-filled torso phantomMC scatter estimationTriple-energy-windowActivity estimationIterative reconstruction algorithmTorso phantomPhantom studyBackground compartmentScatter estimationActivity distributionAverage relative biasPhantomReconstruction algorithmActivity concentrationsSynthetic projectionsSphere locationScattering
2006
Simultaneous Dual Tracer PET Using Generalized Factor Analysis of Dynamic Sequences
Fakhri G, Sitek A, Guérin B. Simultaneous Dual Tracer PET Using Generalized Factor Analysis of Dynamic Sequences. 2006, 4: 2128-2130. DOI: 10.1109/nssmic.2006.354334.Peer-Reviewed Original Research
2001
Absolute Activity Quantitation From Projections Using an Analytical Approach: Comparison With Iterative Methods in Tc-99M and I-123 Brain SPECT
Fakhri G, Kijewski M, Moore S. Absolute Activity Quantitation From Projections Using an Analytical Approach: Comparison With Iterative Methods in Tc-99M and I-123 Brain SPECT. IEEE Transactions On Nuclear Science 2001, 48: 768. DOI: 10.1109/23.940161.Peer-Reviewed Original ResearchVariable collimator responseI-123 studiesOrdered subsets-expectation maximizationI-123Tc-99mTc-99Brain phantomAttenuation correctionAnthropomorphic brain phantomDigital brain phantomTc-99m studiesMonte Carlo simulated projectionsCollimator responseActivity quantitationPathological patientsBrain structuresBrain SPECTActivity distributionPoor spatial resolutionSPECT activityQuantitative accuracyFitting procedurePartial volume effectsCaudate nucleusCorpus callosumAbsolute activity quantitation in simultaneous 123I/99mTc brain SPECT.
El Fakhri G, Moore S, Maksud P, Aurengo A, Kijewski M. Absolute activity quantitation in simultaneous 123I/99mTc brain SPECT. Journal Of Nuclear Medicine 2001, 42: 300-8. PMID: 11216530.Peer-Reviewed Original ResearchMeSH KeywordsAlzheimer DiseaseBenzamidesBrainCerebellumCerebral CortexCerebrovascular CirculationCorpus CallosumHumansIodine RadioisotopesMonte Carlo MethodNeural Networks, ComputerParkinson DiseasePhantoms, ImagingPutamenPyrrolidinesRadiopharmaceuticalsSensitivity and SpecificityTechnetium Tc 99m ExametazimeTomography, Emission-Computed, Single-PhotonConceptsOrdered-subset expectation maximizationDistance-dependent collimator responseActivity quantitationActivity distributionIterative ordered-subsets expectation maximizationZubal brain phantomAsymmetric windowsSimulated normal populationPathological studiesDecay photonsBrain SPECTCollimator responseNonuniform attenuationDual-isotope imagingBrain phantomMonte Carlo simulationsCorpus callosumNormal populationPartial volume effectsCarlo simulationsCortical lobesAssessment of brain perfusionScatteringCross-talkBrain perfusion
2000
Should scatter be corrected in both transmission and emission data for accurate quantitation in cardiac SPET?
El Fakhri G, Buvat I, Almeida P, Bendriem B, Todd-Pokropek A, Benali H. Should scatter be corrected in both transmission and emission data for accurate quantitation in cardiac SPET? European Journal Of Nuclear Medicine And Molecular Imaging 2000, 27: 1356-1364. PMID: 11007518, DOI: 10.1007/s002590000304.Peer-Reviewed Original ResearchConceptsTransmission dataSingle-photon emission tomographyActivity distributionSignal-to-noise ratioCardiac single-photon emission tomographyAttenuation-corrected imagesAmount of scatterNarrow transmission windowHot compartmentActivity quantitationTransmission scanEmission dataEmission acquisitionTransmission windowReduced signal-to-noise ratioTransmission scatteringScatteringScattering componentPhantomQuantitative accuracyReduced scatteringAttenuating mediaReconstructed imagesLine sourceEmissionAbsolute activity quantitation from projections using an analytical approach: comparison with iterative methods in brain SPECT
Fakhri G, Kijewski M, Moore S. Absolute activity quantitation from projections using an analytical approach: comparison with iterative methods in brain SPECT. 2011 IEEE Nuclear Science Symposium Conference Record 2000, 3: 18/7-1811 vol.3. DOI: 10.1109/nssmic.2000.949215.Peer-Reviewed Original ResearchVariable collimator responseI-123 studiesI-123Tc-99Attenuation correctionTc-99mBrain SPECTDigital brain phantomTc-99m studiesMonte Carlo simulated projectionsCollimator responseActivity quantitationActivity estimationBrain phantomOSEM algorithmBrain structuresActivity distributionAccurate quantitationPoor spatial resolutionSPECT activityFitting procedurePartial volume effectsCaudate nucleusCorpus callosumSpatial resolution
1999
A new correction method for cross-talk using artificial neural networks: validation in simultaneous technetium and iodine cerebral imaging
Fakhri G, Maksud P, Habert M, Todd-Pokropek A, Aurengo A. A new correction method for cross-talk using artificial neural networks: validation in simultaneous technetium and iodine cerebral imaging. 2011 IEEE Nuclear Science Symposium Conference Record 1999, 2: 1000-1004 vol.2. DOI: 10.1109/nssmic.1999.845830.Peer-Reviewed Original ResearchEnergy window methodMonte CarloHuman brain phantomI-123 imagingGeometric phantomsBrain phantomMC simulationsTc-99mCorrection methodDual-isotope studiesActivity distributionM imagesI-123PhantomAssessment of brain perfusionCross-talkRadionuclidesTc-99Cerebral imagingCorrectionBrain perfusionClinical potentialBackprojectionMonteCarlo