2024
A deep learning-based approach to nuisance signal removal from MRSI data aqcuired without suppression
Lee W, Zhuo Y, Marin T, Han P, Chi D, Fakhri G, Ma C. A deep learning-based approach to nuisance signal removal from MRSI data aqcuired without suppression. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2024 DOI: 10.58530/2024/0259.Peer-Reviewed Original ResearchDeep learning-based methodsLearning-based methodsU-Net structureSignal removalIn vivo MRSI dataNeural networkU-NetMRSI dataImage reconstructionSuperior performanceData processingRobust performanceHankel matrixNetworkNuisance signalsConventional methodsPerformanceMRSI signalsSignalMethodRemove nuisance signalsRemovalHankel
2023
Attenuation correction for PET imaging using conditional denoising diffusion probabilistic model
Dong Y, Jang S, Han P, Johnson K, Ma C, Fakhri G, Li Q, Gong K. Attenuation correction for PET imaging using conditional denoising diffusion probabilistic model. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10338188.Peer-Reviewed Original ResearchDiffusion probabilistic modelGenerative adversarial networkConditional encodingAttenuation correctionDenoising diffusion probabilistic modelLow-level featuresProbabilistic modelAttenuation coefficientAdversarial networkExtract featuresPET/MR systemsEncodingPET acquisitionNovel methodDiffusion encodingMagnetic resonanceImagesPET imagingCorrectionMR imagingUNetAttenuationNetworkFeaturesResonance
2019
Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning
Gong K, Han P, Fakhri G, Ma C, Li Q. Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning. NMR In Biomedicine 2019, 35: e4224. PMID: 31865615, PMCID: PMC7306418, DOI: 10.1002/nbm.4224.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratioImage denoisingReconstruction frameworkDeep learning-based image denoisingDeep learning-based denoisersMR image denoisingLearning-based denoisingLow signal-to-noise ratioK-space dataNoisy imagesTraining labelsTraining pairsNetwork inputNeural networkDenoisingIn vivo experiment dataSuperior performanceImaging speedReconstruction processImage qualityLong imaging timesNetworkFrameworkImagesSpatial resolution