2024
Proteomic basis for pancreatic acinar cell carcinoma and pancreatoblastoma as similar yet distinct entities
Tanaka A, Ogawa M, Zhou Y, Hendrickson R, Miele M, Li Z, Klimstra D, Wang J, Roehrl M. Proteomic basis for pancreatic acinar cell carcinoma and pancreatoblastoma as similar yet distinct entities. Npj Precision Oncology 2024, 8: 221. PMID: 39363045, PMCID: PMC11449907, DOI: 10.1038/s41698-024-00708-5.Peer-Reviewed Original ResearchAcinar cell carcinomaPancreatic ductal adenocarcinomaActin-based processesPathway activity differencesCell carcinomaChromosome organizationChromosomal proteinsProteomic basisRNA processingIGF2 pathwayProtein expression patternsEpithelial-to-mesenchymal transitionProteogenomic profilingPancreatic acinar cell carcinomaProteomic landscapeDNA repairCell cycleRare pancreatic malignancyExpression patternsMitochondrial dysfunctionStem cell phenotypeMetabolic adaptationProteinExtracellular matrixPancreatic malignancyFood perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver
Henschke S, Nolte H, Magoley J, Kleele T, Brandt C, Hausen A, Wunderlich C, Bauder C, Aschauer P, Manley S, Langer T, Wunderlich F, Brüning J. Food perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver. Science 2024, 384: 438-446. PMID: 38662831, DOI: 10.1126/science.adk1005.Peer-Reviewed Original ResearchConceptsMitochondrial fragmentationInsulin-stimulated suppression of hepatic glucose productionInduced mitochondrial fragmentationMitochondrial fission factorPro-opiomelanocortin (POMC)-expressing neuronsControl of hepatic glucose metabolismKnock-in mutationHepatic glucose metabolismFission factorMitochondrial dynamicsSerine 131Fragments in vitroNutrient availabilityKnock-In MiceMitochondrial functionDynamic regulationHepatic glucose productionLiver mitochondriaSuppression of hepatic glucose productionMetabolic adaptationPhosphorylationNutritional stateGlucose productionIn vivoGlucose metabolism
2023
Evidence that OLE RNA is a component of a major stress‐responsive ribonucleoprotein particle in extremophilic bacteria
Breaker R, Harris K, Lyon S, Wencker F, Fernando C. Evidence that OLE RNA is a component of a major stress‐responsive ribonucleoprotein particle in extremophilic bacteria. Molecular Microbiology 2023, 120: 324-340. PMID: 37469248, DOI: 10.1111/mmi.15129.Peer-Reviewed Original ResearchConceptsOLE RNAPrecise biochemical functionFundamental cellular processesCell growthTOR complexesProtein partnersRibonucleoprotein complexesCellular processesRNP complexesBiochemical functionsGram-positive bacteriaNoncoding RNAsRibonucleoprotein particleExtremophilic bacteriaBacterial speciesGenetic disruptionStress conditionsDiverse pathwaysRNAMetabolic adaptationCell membraneExtreme environmentsCarbon sourceBacteriaComplexes
2022
Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities
Karz A, Dimitrova M, Kleffman K, Alvarez‐Breckenridge C, Atkins MB, Boire A, Bosenberg M, Brastianos P, Cahill DP, Chen Q, Ferguson S, Forsyth P, Oliva I, Goldberg SB, Holmen SL, Knisely JPS, Merlino G, Nguyen DX, Pacold ME, Perez‐Guijarro E, Smalley KSM, Tawbi HA, Wen PY, Davies MA, Kluger HM, Mehnert JM, Hernando E. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell & Melanoma Research 2022, 35: 554-572. PMID: 35912544, PMCID: PMC10171356, DOI: 10.1111/pcmr.13059.Peer-Reviewed Original ResearchConceptsMelanoma brain metastasesMBM patientsBrain metastasesCheckpoint inhibitor trialsCommon brain malignancyMelanoma Research FoundationDedicated clinical trialsRole of astrocytesNovel treatment approachesImmunotherapy trialsInhibitor trialsBrain malignanciesClinical trialsPatient outcomesBrain microenvironmentTreatment approachesPatient advocatesPatientsTrialsTherapeutic purposesMetabolic adaptationMetastasisCurrent standardTherapyRecent reports
2021
Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis
Gómez-Valadés AG, Pozo M, Varela L, Boudjadja MB, Ramírez S, Chivite I, Eyre E, Haddad-Tóvolli R, Obri A, Milà-Guasch M, Altirriba J, Schneeberger M, Imbernón M, Garcia-Rendueles AR, Gama-Perez P, Rojo-Ruiz J, Rácz B, Alonso MT, Gomis R, Zorzano A, D’Agostino G, Alvarez CV, Nogueiras R, Garcia-Roves PM, Horvath TL, Claret M. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism 2021, 33: 1820-1835.e9. PMID: 34343501, PMCID: PMC8432968, DOI: 10.1016/j.cmet.2021.07.008.Peer-Reviewed Original ResearchConceptsProtein OPA1Mitochondrial CaMitochondrial cristae architectureAdipose tissue lipolysisKey metabolic sensorPOMC neuronsCellular metabolic adaptationTissue lipolysisCristae architectureMetabolic sensorNutrient availabilityWhite adipose tissue lipolysisAlpha-melanocyte stimulating hormoneGenetic inactivationNovel axisMitochondrial functionOPA1Metabolic adaptationMitochondrial cristaeDramatic alterationsMutant miceProopiomelanocortin neuronsLipolysis controlWAT lipolysisPharmacological blockadeEvaluation of high salinity tolerance in Pongamia pinnata (L.) Pierre by a systematic analysis of hormone‐metabolic network
Marriboina S, Sharma K, Sengupta D, Yadavalli AD, Sharma RP, Attipalli R. Evaluation of high salinity tolerance in Pongamia pinnata (L.) Pierre by a systematic analysis of hormone‐metabolic network. Physiologia Plantarum 2021, 173: 1514-1534. PMID: 34165187, DOI: 10.1111/ppl.13486.Peer-Reviewed Original ResearchConceptsSalt-treated plantsCarbon exchange rateSalt stressSalinity toleranceJasmonic acid levelsSalt stress conditionsRelative water contentHigh salinity toleranceExpression of genesGene expression analysisPongamia pinnata (L.) PierreBiofuel treeSalinity stressPlant productivitySodium sequestrationExpression analysisZeatin contentProton exchangersDismutase geneStress conditionsMolecular levelSaline environmentsMetabolic adaptationLeavesGenesSingle-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response
Levine L, Hiam-Galvez K, Marquez D, Tenvooren I, Madden M, Contreras D, Dahunsi D, Irish J, Oluwole O, Rathmell J, Spitzer M. Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response. Immunity 2021, 54: 829-844.e5. PMID: 33705706, PMCID: PMC8046726, DOI: 10.1016/j.immuni.2021.02.018.Peer-Reviewed Original ResearchConceptsImmune responseMetabolic stateMass cytometrySingle-cell metabolic analysisSingle-cell resolutionChimeric antigen receptor TDistinct metabolic statesSingle-cell analysisAdvanced lymphoma patientsMetabolic protein expressionListeria monocytogenes infectionImmune cell populationsPrimary immune responseMetabolic proteinsCell signalingOxidative phosphorylationMetabolic regulationLymphoma patientsMemory TMonocytogenes infectionEffector TMetabolic regulatorMetabolic analysisMetabolic adaptationEffector functions
2019
Ketogenic diet activates protective γδ T cell responses against influenza virus infection
Goldberg EL, Molony RD, Kudo E, Sidorov S, Kong Y, Dixit VD, Iwasaki A. Ketogenic diet activates protective γδ T cell responses against influenza virus infection. Science Immunology 2019, 4 PMID: 31732517, PMCID: PMC7189564, DOI: 10.1126/sciimmunol.aav2026.Peer-Reviewed Original ResearchConceptsΓδ T cellsKetogenic dietIAV infectionT cellsGlobal health care concernHigh-fat ketogenic dietΓδ T cell responsesInfection-associated morbidityLethal IAV infectionT cell responsesInfluenza virus infectionHealth care concernHigh-carbohydrate dietInfluenza diseaseKD feedingVirus infectionNew therapiesAntiviral resistanceHepatic ketogenesisCare concernsCell responsesInfectionBarrier functionDietMetabolic adaptationHepatic metabolic adaptation in a murine model of glutathione deficiency
Chen Y, Golla S, Garcia-Milian R, Thompson DC, Gonzalez FJ, Vasiliou V. Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chemico-Biological Interactions 2019, 303: 1-6. PMID: 30794799, PMCID: PMC6743730, DOI: 10.1016/j.cbi.2019.02.015.Peer-Reviewed Original ResearchConceptsCellular non-protein thiolsMetabolic adaptationGlutamate-cysteine ligase modifier subunitNon-protein thiolsHepatic metabolic adaptationCellular redoxGlobal profilingGSH homeostasisModifier subunitLiver developmentBiochemical mechanismsMetabolic homeostasisAmino acidsGclm null miceDefense mechanismsEnvironmental insultsOxidative damageFatty liver developmentNull miceSpectrum of changesNucleic acidsMetabolic signaturesPivotal roleHomeostasisGlutathione deficiency
2018
Activity-Based Protein Profiling at the Host–Pathogen Interface
Kovalyova Y, Hatzios SK. Activity-Based Protein Profiling at the Host–Pathogen Interface. Current Topics In Microbiology And Immunology 2018, 420: 73-91. PMID: 30203396, DOI: 10.1007/82_2018_129.BooksConceptsActivity-based protein profilingHost-pathogen interfaceProtein profilingFunctional proteomePathogen interactionsMicrobial pathogenicityComplex proteomesEnzyme-mediated mechanismReactive amino acidsActive enzymeChemical probesAmino acidsMetabolic adaptationProteomeMicrobial infectionsCo-culture systemBiological systemsHost immunityEnzymeProfilingPathogenicityHostProbeAnimal modelsAdaptationA protein that controls the onset of a Salmonella virulence program
Yeom J, Pontes MH, Choi J, Groisman EA. A protein that controls the onset of a Salmonella virulence program. The EMBO Journal 2018, 37: embj201796977. PMID: 29858228, PMCID: PMC6043847, DOI: 10.15252/embj.201796977.Peer-Reviewed Original ResearchConceptsVirulence programBacterial inner membraneMaster virulence regulatorC-terminal domainHost tissuesAnti-virulence factorMgtC proteinInner membraneGenetic programVirulence regulatorConstitutive promoterGene transcriptionIntramacrophage survivalSame mRNAAntibiotic toleranceATP synthesisPathogen survivalGenesMetabolic adaptationCytoplasmic pHSerovar TyphimuriumPathogen persistenceVirulence genesProteinMechanism of action
2017
Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation
Ruan HB, Ma Y, Torres S, Zhang B, Feriod C, Heck RM, Qian K, Fu M, Li X, Nathanson MH, Bennett AM, Nie Y, Ehrlich BE, Yang X. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes & Development 2017, 31: 1655-1665. PMID: 28903979, PMCID: PMC5647936, DOI: 10.1101/gad.305441.117.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, BiologicalAnimalsAutophagyAutophagy-Related Protein 5Autophagy-Related Protein-1 HomologCalcium SignalingCalcium-Calmodulin-Dependent Protein Kinase Type 2Cells, CulturedGlucagonHEK293 CellsHeLa CellsHumansInositol 1,4,5-Trisphosphate ReceptorsLiverMice, Inbred C57BLN-AcetylglucosaminyltransferasesNutritional Physiological PhenomenaConceptsAMPK-dependent phosphorylationLiver autophagyN-acetylglucosamine transferaseCalmodulin-dependent kinase IICalcium/calmodulin-dependent kinase IIWhole-body homeostasisULK proteinsNutrient homeostasisKinase IICalcium signalingAutophagic fluxGenetic ablationMetabolic adaptationAutophagyStarvationOGTPhosphorylationHomeostasisMouse liverProduction of glucoseKetone bodiesAdaptationSignalingProteinTransferase
2016
Innate Fear-Induced Weight Regulation in the C57BL/6J Mouse
Genné-Bacon EA, Trinko JR, DiLeone RJ. Innate Fear-Induced Weight Regulation in the C57BL/6J Mouse. Frontiers In Behavioral Neuroscience 2016, 10: 132. PMID: 27458352, PMCID: PMC4930939, DOI: 10.3389/fnbeh.2016.00132.Peer-Reviewed Original ResearchHigh-fat dietWeight regulationBody weightBrown adipose thermogenesisDifferential weight gainWeek old miceLong-term neural plasticityDorsomedial hypothalamusFat dietAdipose thermogenesisC57BL/6J miceDiet groupFood intakeBA groupNeural plasticityChronic stressWeight gainAversive doseMiceΔFosB proteinButyric acidMT exposureActivity levelsUnderlying mechanismMetabolic adaptation
2014
Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training
Riehle C, Wende A, Zhu Y, Oliveira K, Pereira R, Jaishy B, Bevins J, Valdez S, Noh J, Kim B, Moreira A, Weatherford E, Manivel R, Rawlings T, Rech M, White M, Abel E. Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training. Molecular And Cellular Biology 2014, 34: 3450-3460. PMID: 25002528, PMCID: PMC4135616, DOI: 10.1128/mcb.00426-14.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEnergy MetabolismGene Expression RegulationGlycogenHeartInsulin Receptor Substrate ProteinsMiceMice, Inbred C57BLMice, KnockoutMitochondriaPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaPhosphatidylinositol 3-KinasesProtein IsoformsSignal TransductionSwimmingTranscription FactorsConceptsInsulin receptor substrate-1IRS isoformsProtein phosphatase 2AReceptor substrate-1Insulin receptor substrateInsulin-like growth factor 1 receptorGrowth factor 1 receptorSynthase kinase-3βPeroxisome proliferator-activated receptor gamma coactivatorPhosphatase 2AProliferator-activated receptor gamma coactivatorFactor 1 receptorPGC-1α protein contentCardiomyocyte-specific deletionDevelopmental regulationProtein contentHypertrophic responseReceptor substrateReceptor gamma coactivatorFatty acid oxidationSubstrate-1Kinase-3βDivergent rolesMetabolic adaptationNonredundant role
2013
Increased Brain Lactate Concentrations Without Increased Lactate Oxidation During Hypoglycemia in Type 1 Diabetic Individuals
De Feyter HM, Mason GF, Shulman GI, Rothman DL, Petersen KF. Increased Brain Lactate Concentrations Without Increased Lactate Oxidation During Hypoglycemia in Type 1 Diabetic Individuals. Diabetes 2013, 62: 3075-3080. PMID: 23715622, PMCID: PMC3749358, DOI: 10.2337/db13-0313.Peer-Reviewed Original ResearchConceptsBrain lactate concentrationBlood-brain barrierHypoglycemia unawarenessLactate concentrationT1D subjectsControl subjectsType 1 diabetic subjectsType 1 diabetic individualsBlood-borne lactateNondiabetic control subjectsPlasma lactate concentrationMonocarboxylic acid transportDiabetic subjectsHypoglycemic clampT1D patientsDiabetic individualsBrain metabolismBrain fuelBrain glutamateBrain energeticsHypoglycemiaPatientsMetabolic adaptationAcid transportSubjects
2011
The Regulation of Sulfur Metabolism in Mycobacterium tuberculosis
Hatzios SK, Bertozzi CR. The Regulation of Sulfur Metabolism in Mycobacterium tuberculosis. PLOS Pathogens 2011, 7: e1002036. PMID: 21811406, PMCID: PMC3141025, DOI: 10.1371/journal.ppat.1002036.Peer-Reviewed Original ResearchConceptsSulfate assimilation pathwayAssimilation pathwayDiverse environmental cuesMycobacterium tuberculosisBiosynthesis of moleculesHost immune cellsSmall molecule regulatorsSuccessful human pathogenSulfur metabolismRegulatory cuesMtb infectionGranuloma formationImmune cellsEnvironmental cuesRegulatory proteinsSulfur-containing metabolitesMolecule regulatorsAlveolar macrophagesTherapeutic interventionsMetabolism regulationBiochemical mechanismsIntracellular pathogensMetabolic adaptationHuman pathogensTuberculosisManipulating the Bioenergetics of Alloreactive T Cells Causes Their Selective Apoptosis and Arrests Graft-Versus-Host Disease
Gatza E, Wahl D, Opipari A, Sundberg T, Reddy P, Liu C, Glick G, Ferrara J. Manipulating the Bioenergetics of Alloreactive T Cells Causes Their Selective Apoptosis and Arrests Graft-Versus-Host Disease. Science Translational Medicine 2011, 3: 67ra8. PMID: 21270339, PMCID: PMC3364290, DOI: 10.1126/scitranslmed.3001975.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBenzodiazepinesBone Marrow CellsBone Marrow TransplantationFemaleGraft vs Host DiseaseIsoantigensLactatesLymphocyte ActivationMetabolomeMiceMice, Inbred BALB CMice, Inbred C57BLMitochondrial Proton-Translocating ATPasesOxidative PhosphorylationOxygen ConsumptionReactive Oxygen SpeciesT-LymphocytesConceptsAlloreactive T cellsT cellsHost diseaseBM transplantationAerobic glycolysisAdenosine triphosphateAccumulation of acylcarnitinesBone marrow cellsFatty acid oxidationGraft-VersusLymphocyte reconstitutionImmune activationBMT modelBM cellsImmune disordersHematopoietic engraftmentTherapeutic strategiesOxidative phosphorylationSmall molecule inhibitorsMarrow cellsSuperoxide productionSufficient adenosine triphosphateMitochondrial membrane potentialMetabolic adaptationAcid oxidation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply