2023
Creating Selenocysteine-Specific Reporters Using Inteins
Chung C, Söll D, Krahn N. Creating Selenocysteine-Specific Reporters Using Inteins. Methods In Molecular Biology 2023, 2676: 69-86. PMID: 37277625, DOI: 10.1007/978-1-0716-3251-2_5.Peer-Reviewed Original Research
2018
Activity-Based Protein Profiling at the Host–Pathogen Interface
Kovalyova Y, Hatzios SK. Activity-Based Protein Profiling at the Host–Pathogen Interface. Current Topics In Microbiology And Immunology 2018, 420: 73-91. PMID: 30203396, DOI: 10.1007/82_2018_129.BooksConceptsActivity-based protein profilingHost-pathogen interfaceProtein profilingFunctional proteomePathogen interactionsMicrobial pathogenicityComplex proteomesEnzyme-mediated mechanismReactive amino acidsActive enzymeChemical probesAmino acidsMetabolic adaptationProteomeMicrobial infectionsCo-culture systemBiological systemsHost immunityEnzymeProfilingPathogenicityHostProbeAnimal modelsAdaptation
2015
Dead enzymes in the aldehyde dehydrogenase gene family: role in drug metabolism and toxicology
Jackson BC, Thompson DC, Charkoftaki G, Vasiliou V. Dead enzymes in the aldehyde dehydrogenase gene family: role in drug metabolism and toxicology. Expert Opinion On Drug Metabolism & Toxicology 2015, 11: 1839-1847. PMID: 26558415, PMCID: PMC4937717, DOI: 10.1517/17425255.2016.1108406.Peer-Reviewed Original ResearchConceptsAldehyde dehydrogenase gene familiesDehydrogenase gene familyDead enzymesGene familyActive enzymeProtein-protein interactionsTotal enzyme populationNon-enzymatic functionsALDH proteinsAvailability of substratesSubcellular spaceGene productsKey residuesProtein recordsCatalytic activityEnzyme populationPathophysiological functionsAllosteric modulationEnzymeBiological actionsProteinBiological activityComputational analysisALDHFamily
2013
Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors
Gould ND, Allen C, Nam BC, Schepartz A, Miller SJ. Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors. Carbohydrate Research 2013, 382: 36-42. PMID: 24177201, DOI: 10.1016/j.carres.2013.09.011.Peer-Reviewed Original ResearchConceptsLewis acidGlycosylation reactionsCombined Lewis acidControl reactionsSubsequent kinetic studiesCatalytic systemBiomimetic conditionsCarboxylic acidsGlycosyl donorsIrreversible reactionKinetic studiesReactionAcid actsCatalytic componentAcidActive enzymeCarbohydrate-active enzymesCatalystProof of principleReactivityDonorsGlycosylStructure
2010
Asymmetric receptor contact is required for tyrosine autophosphorylation of fibroblast growth factor receptor in living cells
Bae JH, Boggon TJ, Tomé F, Mandiyan V, Lax I, Schlessinger J. Asymmetric receptor contact is required for tyrosine autophosphorylation of fibroblast growth factor receptor in living cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 2866-2871. PMID: 20133753, PMCID: PMC2840318, DOI: 10.1073/pnas.0914157107.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTyrosine autophosphorylationKinase moleculesTyrosine kinaseFGFR1 kinase domainSpecific docking sitesAsymmetric dimer formationFibroblast growth factor receptorActivation of intracellularKinase domainOncogenic activating mutationsGrowth factor receptorMolecular basisDocking siteKinase activityBiochemical experimentsActive enzymeN-lobeC-lobeFGF receptorsFunction mutationsAutophosphorylationTransphosphorylationLiving cellsFactor receptor
2008
Quality control despite mistranslation caused by an ambiguous genetic code
Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, LaRossa RA, Söll D. Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 16502-16507. PMID: 18946032, PMCID: PMC2575449, DOI: 10.1073/pnas.0809179105.Peer-Reviewed Original ResearchConceptsGenetic codeAa-tRNAWild-type proteinAminoacyl-tRNA synthetasesInactive mutant proteinsHeat shock responseE. coliMutant proteinsReporter proteinMissense suppressionFunctional proteinsCognate tRNASelective pressureAminoacyl-tRNAActive enzymeShock responseProtein synthesisNative conformationEnergetic costAmino acidsMissense mutationsProteinBiochemical evidenceCorrect pairingProtein quality
2004
Chapter 4 Enzymes
Silverman R. Chapter 4 Enzymes. 2004, 173-225. DOI: 10.1016/b978-0-08-051337-9.50009-2.Peer-Reviewed Original ResearchCatalyze hydrolytic reactionsCytosol of cellsMechanisms of enzyme catalysisEnzyme-substrate complexSubstrate to productGenetic engineering techniquesEnzyme-catalyzed reactionsEnzyme functionActive enzymeTransition state energiesEnzyme instabilityCatalyze chemical reactionsEnzyme catalysisState energyEnzymeNatural proteinsBond vibrationsTransition stateHigh-energy statesActive siteHydrolytic reactionChemical reactionsEnergetic intermediatesCatalysisReaction
1996
Characterization of Bovine Endothelial Nitric Oxide Synthase Expressed inE. coli
Martasek P, Liu Q, Liu J, Roman L, Gross S, Sessa W, Masters B. Characterization of Bovine Endothelial Nitric Oxide Synthase Expressed inE. coli. Biochemical And Biophysical Research Communications 1996, 219: 359-365. PMID: 8604992, DOI: 10.1006/bbrc.1996.0238.Peer-Reviewed Original ResearchConceptsE. coliBaculovirus expression systemBovine endothelial nitric oxide synthaseSDS/PAGEHEK-293 cellsChaperonin GroELHeterologous expressionRecombinant enzymeExpression systemExpression vectorActive enzymeFormation assaysEnzymatic activityColiEnzymeTissue sourcesEndothelial constitutive nitric oxide synthaseProteinSingle bandSynthaseNitric oxide synthaseAbsorbance maximumEndothelial nitric oxide synthase
1993
Molecular requirements for the cell-surface expression of multisubunit ion-transporting ATPases. Identification of protein domains that participate in Na,K-ATPase and H,K-ATPase subunit assembly
Gottardi CJ, Caplan MJ. Molecular requirements for the cell-surface expression of multisubunit ion-transporting ATPases. Identification of protein domains that participate in Na,K-ATPase and H,K-ATPase subunit assembly. Journal Of Biological Chemistry 1993, 268: 14342-14347. PMID: 8390991, DOI: 10.1016/s0021-9258(19)85246-8.Peer-Reviewed Original ResearchConceptsK-ATPase alpha subunitK-ATPase beta subunitAlpha subunitBeta subunitCell surface expressionTerminal halfK-ATPaseCell surface deliveryEfficient cell surface expressionK-ATPase alphaNH2-terminal halfCOS-1 cellsIon-transporting ATPasesProtein domainsK-ATPase enzymeSubunit assemblySurface deliveryIntracellular vesiclesSubunit chimerasIndividual subunitsActive enzymeMolecular requirementsSubunitsCell surfaceBeta protein
1991
Two glutamyl-tRNA reductase activities in Escherichia coli
Jahn D, Michelsen U, Söll D. Two glutamyl-tRNA reductase activities in Escherichia coli. Journal Of Biological Chemistry 1991, 266: 2542-2548. PMID: 1990004, DOI: 10.1016/s0021-9258(18)52279-1.Peer-Reviewed Original ResearchConceptsReductase activityGlu-tRNA reductaseMolecular massEscherichia coliApparent molecular massDifferent chromatographic separationsSequence-specific recognitionGlycerol gradient centrifugationThree-step conversionTetrapyrrole biosynthesisChlamydomonas reinhardtiiE. coli K12ALA formationChromatographic separationKey enzymeMonomeric structureActive enzymeBacillus subtilisColi K12Nondenaturing conditionsHomogeneous proteinMolecular weightDelta-aminolevulinic acidEnzyme activityAddition of GTP
1990
Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme.
Chen M, Jahn D, Schön A, O'Neill G, Söll D. Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme. Journal Of Biological Chemistry 1990, 265: 4054-4057. PMID: 2303494, DOI: 10.1016/s0021-9258(19)39701-7.Peer-Reviewed Original ResearchConceptsGlutamyl-tRNA synthetaseChloroplast enzymeApparent molecular massSequential column chromatographyChlamydomonas reinhardtiiActive enzymeMolecular massNondenaturing conditionsEscherichia coliDenaturing conditionsAcceptor RNASynthetaseMono S.Mono QEnzymeTRNAReinhardtiiYeastColumn chromatographyRNACytoplasmicProteinBarleyColiReversed phase chromatographyPurification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in delta-aminolevulinic acid formation during chlorophyll biosynthesis.
Chen M, Jahn D, O'Neill G, Söll D. Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in delta-aminolevulinic acid formation during chlorophyll biosynthesis. Journal Of Biological Chemistry 1990, 265: 4058-4063. PMID: 2303495, DOI: 10.1016/s0021-9258(19)39702-9.Peer-Reviewed Original ResearchConceptsGlu-tRNA reductaseGlutamyl-tRNA reductaseGlu-tRNAChlamydomonas reinhardtiiTRNA-dependent transformationChloroplasts of plantsDelta-aminolevulinic acid formationApparent molecular massChlorophyll biosynthesisGlutamyl-tRNAHomologous tRNAsSecond enzymeActive enzymeMolecular massNondenaturing conditionsDifferent chromatographic separationsCertain bacteriaReductaseDelta-aminolevulinic acidReinhardtiiPorphyrin biosynthesisBiosynthesisStable complexesChromatographic separationCarboxyl groups
1988
Mitochondrial Import and Processing of Mutant Human Ornithine Transcarbamylase Precursors in Cultured Cells
Isaya G, Fenton W, Hendrick J, Furtak K, Kalousek F, Rosenberg L. Mitochondrial Import and Processing of Mutant Human Ornithine Transcarbamylase Precursors in Cultured Cells. Molecular And Cellular Biology 1988, 8: 5150-5158. DOI: 10.1128/mcb.8.12.5150-5158.1988.Peer-Reviewed Original ResearchLeader peptideMitochondrial importMutant precursorHeLa cellsAssociated with mitochondriaHuman ornithine transcarbamylaseAmino acid substitutionsOrnithine transcarbamylase precursorIntact HeLa cellsIntramitochondrial locationLack of bindingMutant proteinsMitochondrial matrixAcid substitutionsActive enzymeActive trimerMitochondrial fractionTrypsin protectionAffinity columnFractionation studiesMitochondriaCultured cellsCytosolOrnithine transcarbamylaseMutations
1986
Escherichia coli exonuclease VII. Cloning and sequencing of the gene encoding the large subunit (xseA).
Chase J, Rabin B, Murphy J, Stone K, Williams K. Escherichia coli exonuclease VII. Cloning and sequencing of the gene encoding the large subunit (xseA). Journal Of Biological Chemistry 1986, 261: 14929-14935. PMID: 3021756, DOI: 10.1016/s0021-9258(18)66806-1.Peer-Reviewed Original ResearchConceptsExonuclease VII activityLarge subunitStandard E. coli genetic mapE. coli genetic mapEscherichia coli exonuclease VIIDeletion mutant strainAmino acid sequenceGenetic mapGene productsAcid sequenceMutant strainActive enzymeCell extractsBase pairsGenesExonuclease VIIAmino acidsSubunitsProteinSequenceGuaBXseACloningPromoterMolecular weight
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply