2024
Structural insights into PPP2R5A degradation by HIV-1 Vif
Hu Y, Delviks-Frankenberry K, Wu C, Arizaga F, Pathak V, Xiong Y. Structural insights into PPP2R5A degradation by HIV-1 Vif. Nature Structural & Molecular Biology 2024, 31: 1492-1501. PMID: 38789685, DOI: 10.1038/s41594-024-01314-6.Peer-Reviewed Original ResearchHost-virus protein interactionsCullin RING E3 ubiquitin ligasesInduced G2/M cell cycle arrestSets of proteinsG2/M cell cycle arrestSubstrate-binding siteCryogenic-electron microscopy structuresProtein phosphatase 2ADegradation-independent mechanismCell cycle arrestUbiquitin ligaseProtein interactionsPhosphatase 2AAntiviral proteinCycle arrestDegradation-dependentA-resolutionHIV-1 VifPPP2R5AStructural insightsDiverse interactionsProteinCellular studiesPhosphatase activityPotential target
2021
Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer
Mirzapoiazova T, Xiao G, Mambetsariev B, Nasser MW, Miaou E, Singhal SS, Srivastava S, Mambetsariev I, Nelson MS, Nam A, Behal A, Arvanitis LD, Atri P, Muschen M, Tissot FLH, Miser J, Kovach JS, Sattler M, Batra SK, Kulkarni P, Salgia R. Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer. Molecular Cancer Therapeutics 2021, 20: 1820-1835. PMID: 34253596, PMCID: PMC8722383, DOI: 10.1158/1535-7163.mct-21-0013.Peer-Reviewed Original ResearchConceptsProtein phosphatase 2APhosphatase 2ASerine/threonine phosphataseDNA damage responseRegulation of apoptosisSmall molecule inhibitorsGlycolytic ATP productionThreonine phosphataseTwo-dimensional cultureLB100ATP productionMolecule inhibitorsPP2AThree-dimensional spheroid modelEndothelial cell monolayersGlucose uptakeCell viabilitySCLC cellsTherapeutic targetApoptosisCell monolayersMass spectrometrySpheroid modelTumor spheroidsCells
2019
Precision Therapy for Aggressive Endometrial Cancer by Reactivation of Protein Phosphatase 2A
Haines K, Huang GS. Precision Therapy for Aggressive Endometrial Cancer by Reactivation of Protein Phosphatase 2A. Cancer Research 2019, 79: 4009-4010. PMID: 31416848, DOI: 10.1158/0008-5472.can-19-1938.Commentaries, Editorials and LettersCediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51
Kaplan AR, Gueble SE, Liu Y, Oeck S, Kim H, Yun Z, Glazer PM. Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Science Translational Medicine 2019, 11 PMID: 31092693, PMCID: PMC6626544, DOI: 10.1126/scitranslmed.aav4508.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBRCA1 ProteinBRCA2 ProteinCell Line, TumorDNA RepairDown-RegulationE2F4 Transcription FactorFemaleGene Expression Regulation, NeoplasticHumansMice, NudePoly(ADP-ribose) Polymerase InhibitorsQuinazolinesRad51 RecombinaseReceptors, Platelet-Derived Growth FactorTumor HypoxiaVascular Endothelial Growth Factor Receptor-2Xenograft Model Antitumor AssaysConceptsHomology-directed DNA repairDNA repairE2F transcription factor 4Protein phosphatase 2ATranscription factor 4DNA repair inhibitorsPhosphatase 2ARAD51 recombinaseTranscriptional corepressorMouse tumor xenograftsSynthetic lethalityGene expressionRB2/Mouse bone marrowGrowth factor receptor inhibitionRepair inhibitorsUnknown mechanismPlatelet-derived growth factor receptor inhibitionFactor 4Human tumorsInhibitor olaparibPARP inhibitorsMutationsCombination of cediranibCancer therapy
2018
B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies
Xiao G, Chan LN, Klemm L, Braas D, Chen Z, Geng H, Zhang QC, Aghajanirefah A, Cosgun KN, Sadras T, Lee J, Mirzapoiazova T, Salgia R, Ernst T, Hochhaus A, Jumaa H, Jiang X, Weinstock DM, Graeber TG, Müschen M. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell 2018, 173: 470-484.e18. PMID: 29551267, PMCID: PMC6284818, DOI: 10.1016/j.cell.2018.02.048.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCarbonCell Line, TumorCell SurvivalGlucoseGlucosephosphate DehydrogenaseGlycolysisHumansIkaros Transcription FactorMiceMice, Inbred C57BLMice, Inbred NODOxidative StressPAX5 Transcription FactorPentose Phosphate PathwayPrecursor Cell Lymphoblastic Leukemia-LymphomaProtein Phosphatase 2Proto-Oncogene Proteins c-bcl-2Transcription, GeneticConceptsPentose phosphate pathwayCarbon utilizationSerine/threonine protein phosphatase 2AB-cell transcription factor PAX5Transcription factor Pax5Favor of glycolysisSmall molecule inhibitionPhosphatase 2ATranscriptional repressionRedox homeostasisOncogenic transformationTumor suppressorMolecule inhibitionPP2AGenetic studiesPhosphate pathwayB cell activationEssential roleB-cell malignanciesCell malignanciesB cellsAntioxidant protectionOxidative stressB-cell tumorsCell activation
2017
Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth
Sangodkar J, Perl A, Tohme R, Kiselar J, Kastrinsky D, Zaware N, Izadmehr S, Mazhar S, Wiredja D, O’Connor C, Hoon D, Dhawan N, Schlatzer D, Yao S, Leonard D, Borczuk A, Gokulrangan G, Wang L, Svenson E, Farrington C, Yuan E, Avelar R, Stachnik A, Smith B, Gidwani V, Giannini H, McQuaid D, McClinch K, Wang Z, Levine A, Sears R, Chen E, Duan Q, Datt M, Haider S, Ma’ayan A, DiFeo A, Sharma N, Galsky M, Brautigan D, Ioannou Y, Xu W, Chance M, Ohlmeyer M, Narla G. Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth. Journal Of Clinical Investigation 2017, 127: 2081-2090. PMID: 28504649, PMCID: PMC5451217, DOI: 10.1172/jci89548.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsCell Line, TumorCell SurvivalDrug Resistance, NeoplasmEnzyme ActivationEnzyme ActivatorsHumansMaleMice, Inbred BALB CMice, NudeMice, TransgenicProtein BindingProtein Phosphatase 2Proto-Oncogene Proteins p21(ras)Signal TransductionTumor BurdenXenograft Model Antitumor AssaysConceptsTumor suppressor proteinSmall molecule activatorsSuppressor proteinTumor suppressor protein phosphatase 2AMolecule activatorsProtein phosphatase 2AInactivation of kinasesOncogenic signaling proteinsPhosphatase 2AScaffold subunitSignaling proteinsEndogenous phosphatasesNegative regulatorOncogenic kinasesConformational changesCancer-associated molecular targetsKRAS-mutant lung cancerPP2AMolecular targetsProteinCancer cellsKinaseMouse xenograftsTreatment of cancerActivatorARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase)
Andrade EC, Musante V, Horiuchi A, Matsuzaki H, Brody AH, Wu T, Greengard P, Taylor JR, Nairn AC. ARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase). Journal Of Neuroscience 2017, 37: 2709-2722. PMID: 28167675, PMCID: PMC5354324, DOI: 10.1523/jneurosci.4559-15.2017.Peer-Reviewed Original ResearchConceptsSerine/threonine protein phosphataseSerine/threonine kinase 3Threonine protein phosphataseARPP-16Protein phosphataseKinase 3Protein phosphatase 2AProtein kinase A (PKA) signalingSmall acid-soluble proteinsKinase A SignalingAcid-soluble proteinsActivation of PKAPP2A substratesPhosphatase 2AARPP-16/19Heterotrimeric formMarked dephosphorylationSignal transductionSelective inhibitorPP2AA SignalingUnknown functionStriatal medium spiny neuronsMedium spiny neuronsSer46Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension
Chen P, Cao A, Miyagawa K, Tojais N, Hennigs J, Li C, Sweeney N, Inglis A, Wang L, Li D, Ye M, Feldman B, Rabinovitch M. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension. JCI Insight 2017, 2: e90427. PMID: 28138562, PMCID: PMC5256132, DOI: 10.1172/jci.insight.90427.Peer-Reviewed Original ResearchMeSH KeywordsAdultAmphetamine-Related DisordersAmphetaminesAnimalsCaspase 3DNA DamageElectron TransportEndothelial CellsFemaleHumansHypertension, PulmonaryHypoxiaHypoxia-Inducible Factor 1, alpha SubunitIn Vitro TechniquesMaleMethamphetamineMiceMiddle AgedMitochondriaOxidative PhosphorylationProtein Phosphatase 2Protein Serine-Threonine KinasesProto-Oncogene Proteins c-aktPulmonary ArteryPyruvate Dehydrogenase Acetyl-Transferring KinaseReactive Oxygen SpeciesSirtuin 1Vascular RemodelingConceptsPulmonary artery endothelial cellsPulmonary arterial hypertensionDNA damageHypoxic pulmonary artery endothelial cellsDoses of methamphetaminePulmonary vascular remodelingImpaired electron transportActivity of protein phosphatase 2AProtein phosphatase 2AResponse to oxidative stressOxidative stressMitochondrial oxidative phosphorylationArtery endothelial cellsInhibition of AktAdaptive response to oxidative stressMitochondrial ROS increaseBinge dosesDNA damage fociPulmonary hypertensionPyruvate dehydrogenase kinase 1Arterial hypertensionIncreased sirtuin 1Phosphatase 2ATranscriptional activityVascular remodeling
2016
Mammalian FMRP S499 Is Phosphorylated by CK2 and Promotes Secondary Phosphorylation of FMRP
Bartley CM, O’Keefe R, Blice-Baum A, Mihailescu MR, Gong X, Miyares L, Karaca E, Bordey A. Mammalian FMRP S499 Is Phosphorylated by CK2 and Promotes Secondary Phosphorylation of FMRP. ENeuro 2016, 3: eneuro.0092-16.2016. PMID: 27957526, PMCID: PMC5116651, DOI: 10.1523/eneuro.0092-16.2016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCasein Kinase IICells, CulturedCerebral CortexFragile X Mental Retardation ProteinHEK293 CellsHumansMass SpectrometryMiceNaphthyridinesPhenazinesPhosphorylationProtein BiosynthesisProtein Kinase InhibitorsReceptors, Metabotropic GlutamateRecombinant ProteinsTime FactorsConceptsTranslational repressionNearby residuesProtein phosphatase 2ACasein kinase IIMental retardation proteinFMRP lossPhosphatase 2AFragile X syndromePP2A pathwaySecondary phosphorylationProtein translationKinase IIGene transcriptsFMRPBrain transcriptsFunction mutationsPhosphorylationS499X syndromeTranscriptsRepressionResiduesRecent evidenceCK2KinasePhosphorylation of a constrained azacyclic FTY720 analog enhances anti-leukemic activity without inducing S1P receptor activation
McCracken A, McMonigle R, Tessier J, Fransson R, Perryman M, Chen B, Keebaugh A, Selwan E, Barr S, Kim S, Roy S, Liu G, Fallegger D, Sernissi L, Brandt C, Moitessier N, Snider A, Clare S, Müschen M, Huwiler A, Kleinman M, Hanessian S, Edinger A. Phosphorylation of a constrained azacyclic FTY720 analog enhances anti-leukemic activity without inducing S1P receptor activation. Leukemia 2016, 31: 669-677. PMID: 27573555, PMCID: PMC5332311, DOI: 10.1038/leu.2016.244.Peer-Reviewed Original ResearchConceptsS1P receptor activationAnti-leukemic actionProtein phosphatase 2APro-apoptotic targetsPhosphatase 2ASphingosine kinase 2Efficient phosphorylationGenetic approachesReceptor activationKinase 2Nutrient accessChemical biologyPhosphorylationTight inverse correlationDistinct mechanismsS1P receptorsAnti-leukemic activityNovel therapeutic approachesLeukemia progressionReceptor activityMRNA expressionAnti-leukemic agentsActivationEnhanced potencyBiology
2014
Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training
Riehle C, Wende A, Zhu Y, Oliveira K, Pereira R, Jaishy B, Bevins J, Valdez S, Noh J, Kim B, Moreira A, Weatherford E, Manivel R, Rawlings T, Rech M, White M, Abel E. Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training. Molecular And Cellular Biology 2014, 34: 3450-3460. PMID: 25002528, PMCID: PMC4135616, DOI: 10.1128/mcb.00426-14.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEnergy MetabolismGene Expression RegulationGlycogenHeartInsulin Receptor Substrate ProteinsMiceMice, Inbred C57BLMice, KnockoutMitochondriaPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaPhosphatidylinositol 3-KinasesProtein IsoformsSignal TransductionSwimmingTranscription FactorsConceptsInsulin receptor substrate-1IRS isoformsProtein phosphatase 2AReceptor substrate-1Insulin receptor substrateInsulin-like growth factor 1 receptorGrowth factor 1 receptorSynthase kinase-3βPeroxisome proliferator-activated receptor gamma coactivatorPhosphatase 2AProliferator-activated receptor gamma coactivatorFactor 1 receptorPGC-1α protein contentCardiomyocyte-specific deletionDevelopmental regulationProtein contentHypertrophic responseReceptor substrateReceptor gamma coactivatorFatty acid oxidationSubstrate-1Kinase-3βDivergent rolesMetabolic adaptationNonredundant roleCeramide-Activated Phosphatase Mediates Fatty Acid–Induced Endothelial VEGF Resistance and Impaired Angiogenesis
Mehra VC, Jackson E, Zhang XM, Jiang XC, Dobrucki LW, Yu J, Bernatchez P, Sinusas AJ, Shulman GI, Sessa WC, Yarovinsky TO, Bender JR. Ceramide-Activated Phosphatase Mediates Fatty Acid–Induced Endothelial VEGF Resistance and Impaired Angiogenesis. American Journal Of Pathology 2014, 184: 1562-1576. PMID: 24606881, PMCID: PMC4005977, DOI: 10.1016/j.ajpath.2014.01.009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaArteriesCattleCeramidesDiet, High-FatEndothelial CellsEnzyme ActivationExtracellular Signal-Regulated MAP KinasesHaploinsufficiencyHindlimbHumansIschemiaMice, Inbred C57BLNeovascularization, PhysiologicNitric OxideNitric Oxide Synthase Type IIIPalmitic AcidPhosphorylationProtein Phosphatase 2Proto-Oncogene Proteins c-aktSerine C-PalmitoyltransferaseSignal TransductionVascular Endothelial Growth Factor AConceptsPP2A inhibitor okadaic acidProtein phosphatase 2AInhibitor okadaic acidVEGF-induced signalingSerine palmitoyltransferase inhibitor myriocinDe novo ceramide synthesisPhosphatase 2AENOS agonistsNovo ceramide synthesisPalmitic acidAngiogenic responsePotential molecular targetsOkadaic acidEndothelial cellsEarly speciesEndothelial cell responsesCord formationVEGFR2 phosphorylationSaturated free fatty acidVEGF resistanceCeramide synthesisResistance mechanismsMolecular targetsVascular homeostasisPhosphorylationB56-PP2A regulates motor dynamics for mitotic chromosome alignment
Xu P, Virshup D, Lee S. B56-PP2A regulates motor dynamics for mitotic chromosome alignment. Journal Of Cell Science 2014, 127: 4567-4573. PMID: 25179604, DOI: 10.1242/jcs.154609.Peer-Reviewed Original ResearchConceptsMitotic chromosome alignmentK-fiber formationB56-PP2AChromosome movementChromosome alignmentMetaphase plateK-fibersB56 family of protein phosphatase 2AMinus-end-directed motor proteinsPlus-ends of microtubulesMitotic checkpoint protein BubR1Kinetochore-microtubule attachmentsProtein phosphatase 2ACheckpoint protein BubR1Mitotic exitDuplicated chromosomesPlus-endRegulatory subunitMotor proteinsPhosphatase 2AChromosomePoleward movementMetaphaseB56Cells
2012
The Prolyl Isomerase Pin1 Targets Stem-Loop Binding Protein (SLBP) To Dissociate the SLBP-Histone mRNA Complex Linking Histone mRNA Decay with SLBP Ubiquitination
Krishnan N, Lam TT, Fritz A, Rempinski D, O'Loughlin K, Minderman H, Berezney R, Marzluff WF, Thapar R. The Prolyl Isomerase Pin1 Targets Stem-Loop Binding Protein (SLBP) To Dissociate the SLBP-Histone mRNA Complex Linking Histone mRNA Decay with SLBP Ubiquitination. Molecular And Cellular Biology 2012, 32: 4306-4322. PMID: 22907757, PMCID: PMC3486140, DOI: 10.1128/mcb.00382-12.Peer-Reviewed Original ResearchMeSH KeywordsCell CycleCell Line, TumorCell NucleusDown-RegulationHEK293 CellsHeLa CellsHistonesHumansmRNA Cleavage and Polyadenylation FactorsNIMA-Interacting Peptidylprolyl IsomeraseNuclear ProteinsPeptidylprolyl IsomeraseProtein Phosphatase 2RNA InterferenceRNA StabilityRNA-Binding ProteinsRNA, MessengerRNA, Small InterferingUbiquitinationConceptsStem-loop binding proteinHistone mRNADegradation of SLBPMRNA stabilityBinding proteinHistone mRNA stabilityRNA degradation machineryHistone mRNA decayS phaseProtein phosphatase 2AHistone mRNA degradationCore histone mRNAsExosome-mediated degradationDownregulation of Pin1Ubiquitin-proteasome systemMRNA 3' endsProlyl isomerase Pin1Phosphatase 2ADegradation machineryMRNA decayMRNA degradationProteasome systemIsomerase Pin1MRNA complexesUntranslated region
2008
Protein phosphatase-2A is activated in pig brain following cardiac arrest and resuscitation
Zhang TT, Platholi J, Heerdt PM, Hemmings HC, Tung HY. Protein phosphatase-2A is activated in pig brain following cardiac arrest and resuscitation. Metabolic Brain Disease 2008, 23: 95-104. PMID: 18197471, DOI: 10.1007/s11011-007-9074-1.Peer-Reviewed Original Research
2002
Site-Specific Dephosphorylation of Endothelial Nitric Oxide Synthase by Protein Phosphatase 2A: Evidence for Crosstalk between Phosphorylation Sites †
Greif DM, Kou R, Michel T. Site-Specific Dephosphorylation of Endothelial Nitric Oxide Synthase by Protein Phosphatase 2A: Evidence for Crosstalk between Phosphorylation Sites †. Biochemistry 2002, 41: 15845-15853. PMID: 12501214, DOI: 10.1021/bi026732g.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCell LineCOS CellsEnzyme ActivationEnzyme InhibitorsMarine ToxinsMutagenesis, Site-DirectedNitric Oxide SynthaseNitric Oxide Synthase Type IIIOkadaic AcidOxazolesPhosphatesPhosphoprotein PhosphatasesPhosphorus RadioisotopesPhosphorylationProtein Phosphatase 2SerineSignal TransductionThreonineTransfectionConceptsProtein phosphatase 2ASerine 116Bovine aortic endothelial cellsCOS-7 cellsENOS dephosphorylationENOS mutantPhosphatase 2ASerine 1179Phosphorylation sitesThreonine 497Calcium/calmodulin-dependent enzymesInhibitor of PP2ASite-specific dephosphorylationProtein kinase pathwayWild-type eNOSEnzyme activityNitric oxide-dependent signaling pathwaysCalmodulin-dependent enzymesProtein phosphatasePosttranslational modificationsEpitope tagENOS phosphorylationKinase pathwayEndothelial cellsRecombinant proteins
2001
Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca2+-Dependent Glutamate Release in Isolated Nerve Terminals
Jovanovic J, Sihra T, Nairn A, Hemmings H, Greengard P, Czernik A. Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca2+-Dependent Glutamate Release in Isolated Nerve Terminals. Journal Of Neuroscience 2001, 21: 7944-7953. PMID: 11588168, PMCID: PMC6763853, DOI: 10.1523/jneurosci.21-20-07944.2001.Peer-Reviewed Original ResearchConceptsDependent dephosphorylationProtein phosphatase 2AMultiple protein kinasesPhosphorylation site 1Protein phosphatase 2BSynapsin IPhosphatase 2APhosphorylation sitesPhosphatase 2BSynapsin functionProtein kinaseDependent phosphorylationSynapsin I phosphorylationDephosphorylation processNeuronal phosphoproteinSynapsin I.Synaptic vesiclesCalcineurin activityPhosphorylationI phosphorylationDephosphorylationNeurotransmitter releaseSpecific sitesExcellent substrateSite 1Mechanisms for Increased Levels of Phosphorylation of Elongation Factor-2 during Hibernation in Ground Squirrels †
Chen Y, Matsushita M, Nairn A, Damuni Z, Cai D, Frerichs K, Hallenbeck J. Mechanisms for Increased Levels of Phosphorylation of Elongation Factor-2 during Hibernation in Ground Squirrels †. Biochemistry 2001, 40: 11565-11570. PMID: 11560506, DOI: 10.1021/bi010649w.Peer-Reviewed Original ResearchConceptsEukaryotic elongation factor 2EEF-2 phosphorylationElongation factor 2Elongation phaseEEF-2 kinase activityProtein phosphatase 2AGround squirrelsLevel of phosphorylationFactor 2Phosphatase 2ACellular functionsCatalytic subunitUncharacterized mechanismKinase activityInhibitor 2Protein synthesisPhosphorylationPP2AHibernating animalsActive animalsHibernatorsReversible mechanismSevere reductionSquirrelsHibernationPhosphorylation of Protein Phosphatase Inhibitor-1 by Cdk5*
Bibb J, Nishi A, O'Callaghan J, Ule J, Lan M, Snyder G, Horiuchi A, Saito T, Hisanaga S, Czernik A, Nairn A, Greengard P. Phosphorylation of Protein Phosphatase Inhibitor-1 by Cdk5*. Journal Of Biological Chemistry 2001, 276: 14490-14497. PMID: 11278334, DOI: 10.1074/jbc.m007197200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesBrainCalcineurinCarrier ProteinsCDC2 Protein KinaseCyclic AMPCyclic AMP-Dependent Protein KinasesCyclin-Dependent Kinase 5Cyclin-Dependent KinasesGlutamic AcidIntracellular Signaling Peptides and ProteinsKineticsMiceMice, Inbred C57BLMutagenesis, Site-DirectedN-MethylaspartatePhosphoprotein PhosphatasesPhosphorylationProlineProtein Phosphatase 1RabbitsRatsRecombinant ProteinsRNA-Binding ProteinsSerineTime FactorsConceptsProtein phosphatase inhibitor-1Protein phosphatase 1Phosphatase inhibitor-1Ser-67Protein kinasePhosphatase 1CAMP-dependent protein kinase resultsSelective protein kinase inhibitorsCAMP-dependent protein kinaseProtein phosphatase 2AProline-directed kinasesMitogen-activated protein kinaseInhibitor-1Protein kinase resultsSignal transduction eventsPhosphorylation state-specific antibodiesCAMP-dependent protein kinase activationState of phosphorylationProtein kinase inhibitorsProtein kinase activationPhosphatase 2AThr-35Protein phosphatasePhosphorylation sitesGlutamate-dependent regulationProtein phosphatase 2A: identification in Oryza sativa of the gene encoding the regulatory A subunit
Yu S, Lei H, Chang W, Söll D, Hong G. Protein phosphatase 2A: identification in Oryza sativa of the gene encoding the regulatory A subunit. Plant Molecular Biology 2001, 45: 107-112. PMID: 11247601, DOI: 10.1023/a:1006472722500.Peer-Reviewed Original ResearchConceptsProtein phosphatase 2AAmino acid identitySouthern blot analysisRice genomePP2A proteinPhosphatase 2ABAC libraryRegulatory subunitOryza sativaNicotiana tabacumAcid identityCDNA libraryBp cDNASingle copyGenomic DNAGenesBlot analysisRice proteinRepeat unitsSubunitsProteinArabidopsisIntronsGenomeRPA1
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply