2025
Contemporary understanding of myeloid-derived suppressor cells in the acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) tumor microenvironment
Alhajahjeh A, Stahl M, Kim T, Kewan T, Stempel J, Zeidan A, Bewersdorf J. Contemporary understanding of myeloid-derived suppressor cells in the acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) tumor microenvironment. Expert Review Of Anticancer Therapy 2025, 25: 435-456. PMID: 40122075, DOI: 10.1080/14737140.2025.2483855.Peer-Reviewed Original ResearchMyeloid-derived suppressor cellsAcute myeloid leukemiaMyelodysplastic syndromeSuppressor cellsTumor microenvironmentMyeloid leukemiaEffects of myeloid-derived suppressor cellsTargets myeloid-derived suppressor cellsLeukemic stem cell survivalRisk of leukemia relapseMDSC-targeted therapiesMDSC-mediated immunosuppressionBone marrow nicheStem cell survivalCytokine-mediated pathwaysLeukemia relapseMyeloid diseasesImprove patient outcomesMarrow nichePost-transplantationPreclinical modelsImmunosuppressive propertiesImmunosuppressive componentsFunctional reprogrammingImmune evasion
2023
Perioperative Immunosuppression in Inflammatory Bowel Disease
Leeds I, Lightner A, Kurowski J. Perioperative Immunosuppression in Inflammatory Bowel Disease. 2023, 613-617. DOI: 10.1007/978-3-031-14744-9_43.ChaptersInflammatory bowel diseaseBowel diseasePotential postoperative morbidityChronic steroid useEndoscopic remissionPostoperative morbidityPerioperative effectsPerioperative periodPharmacologic therapyPostoperative outcomesPerioperative immunosuppressionUlcerative colitisCrohn's diseaseImmunosuppressive agentsOpportunistic infectionsSteroid useImmunosuppressive effectsImmunosuppressive propertiesMonoclonal antibodiesDiseaseImmunosuppressionHigh rateRiskColitisCorticosteroidsCorticosteroids and Cancer Immunotherapy.
Goodman R, Johnson D, Balko J. Corticosteroids and Cancer Immunotherapy. Clinical Cancer Research 2023, 29: 2580-2587. PMID: 36648402, PMCID: PMC10349688, DOI: 10.1158/1078-0432.ccr-22-3181.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsEffects of systemic steroidsImmune checkpoint inhibitor efficacyImmune-mediated adverse eventsTreated with corticosteroidsImpact of steroidsReduced immune activationRobust immune responseProperties of steroidsCheckpoint inhibitorsAntitumor immunityAntitumor responseImmunotherapy efficacySystemic steroidsNoncancer indicationsImmune activationAdverse eventsClinical decision-makingImmunosuppressive propertiesCancer managementPrescribed drugsImmune responseImmunotherapyImprove outcomesAntitumor activity
2019
Association of Prescribed Opioids With Increased Risk of Community-Acquired Pneumonia Among Patients With and Without HIV
Edelman EJ, Gordon KS, Crothers K, Akgün K, Bryant KJ, Becker WC, Gaither JR, Gibert CL, Gordon AJ, Marshall BDL, Rodriguez-Barradas MC, Samet JH, Justice AC, Tate JP, Fiellin DA. Association of Prescribed Opioids With Increased Risk of Community-Acquired Pneumonia Among Patients With and Without HIV. JAMA Internal Medicine 2019, 179: 297-304. PMID: 30615036, PMCID: PMC6439696, DOI: 10.1001/jamainternmed.2018.6101.Peer-Reviewed Original ResearchConceptsVeterans Aging Cohort StudyCommunity-acquired pneumoniaImmunosuppressive propertiesPrescribed opioidsCaP riskHIV statusMedian morphine equivalent daily doseVeterans Health Administration medical centersMorphine equivalent daily doseEquivalent daily doseAging Cohort StudyCase-control studyImmune-related outcomesRace/ethnicityIndex dateOpioid exposureCohort studyDaily doseOpioid propertiesStratified analysisMedical CenterMAIN OUTCOMEOpioidsMedicaid dataHIV
2018
Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1
Liu R, Merola J, Manes TD, Qin L, Tietjen GT, López-Giráldez F, Broecker V, Fang C, Xie C, Chen PM, Kirkiles-Smith NC, Jane-Wit D, Pober JS. Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1. JCI Insight 2018, 3: e97881. PMID: 29515027, PMCID: PMC5922286, DOI: 10.1172/jci.insight.97881.Peer-Reviewed Original ResearchMeSH KeywordsAllograftsAnimalsAntigen PresentationCell CommunicationCells, CulturedDisease Models, AnimalEndothelial CellsEndothelium, VascularFemaleGraft RejectionHealthy VolunteersHuman Umbilical Vein Endothelial CellsHumansIndoleamine-Pyrrole 2,3,-DioxygenaseInterferon-gammaIsoantigensMice, SCIDMicrovesselsPericytesPrimary Cell CultureRNA, Small InterferingSkinSkin TransplantationT-Lymphocytes, CytotoxicTransplantation ChimeraTransplantation, HomologousTryptophanConceptsInduction of indoleamineHuman pericytesEndothelial cellsAllograft rejectionTryptophan depletionT cellsAcute T cell-mediated rejectionT cell-mediated rejectionEffector memory T cellsDioxygenase 1Early acute rejectionCell-mediated rejectionSkin allograft rejectionAlloreactive T cellsHuman renal allograftsMemory T cellsRole of ECsContribution of pericytesAcute rejectionRenal allograftsImmunoregulatory effectsImmunosuppressive propertiesHuman allograftsMouse modelMicrovascular pericytesAndrogen deprivation therapy and risk of rheumatoid arthritis in patients with localized prostate cancer
Yang D, Krasnova A, Nead K, Choueiri T, Hu J, Hoffman K, Yu J, Spratt D, Feng F, Trinh Q, Nguyen P. Androgen deprivation therapy and risk of rheumatoid arthritis in patients with localized prostate cancer. Annals Of Oncology 2018, 29: 386-391. PMID: 29267861, DOI: 10.1093/annonc/mdx744.Peer-Reviewed Original ResearchConceptsAndrogen deprivation therapyDuration of androgen deprivation therapyProstate cancerIncreased riskRheumatoid arthritisDeprivation therapyAutoimmune conditionsAdverse effects of ADTStage I-III prostate cancerEffects of androgen deprivation therapyCompeting risks Cox regressionPharmacological androgen deprivation therapyRA diagnosisLocalized prostate cancerKaplan-Meier ratesRisks Cox regressionInverse probability of treatment weightingProbability of treatment weightingHistory of RACohort of elderly menDiagnosis of RARisk of rheumatoid arthritisUntreated hypogonadismImmunosuppressive propertiesAutoimmune diseases
2017
TH17 cells express ST2 and are controlled by the alarmin IL-33 in the small intestine
Pascual-Reguant A, Sarmadi J, Baumann C, Noster R, Cirera-Salinas D, Curato C, Pelczar P, Huber S, Zielinski CE, Löhning M, Hauser AE, Esplugues E. TH17 cells express ST2 and are controlled by the alarmin IL-33 in the small intestine. Mucosal Immunology 2017, 10: 1431-1442. PMID: 28198366, DOI: 10.1038/mi.2017.5.Peer-Reviewed Original ResearchConceptsPro-inflammatory TH17 cellsIntestinal epithelial cellsTh17 cellsSmall intestineIL-33IL-33/ST2 axisPro-inflammatory T cellsAlarmin IL-33Alarmin interleukin-33IL-33 receptorPro-inflammatory cytokinesAbsence of ST2Beneficial host responseIL-10Interleukin-33Autoimmune diseasesTissue inflammationInflammatory responseImmunosuppressive propertiesT cellsImmune responseInflamed tissuesHost responseImmune systemRegulatory phenotype
2016
The impact of prescribed opioids on CD4 cell count recovery among HIV‐infected patients newly initiating antiretroviral therapy
Edelman E, Gordon K, Tate J, Becker W, Bryant K, Crothers K, Gaither, Gibert C, Gordon A, Marshall B, Rodriguez‐Barradas M, Samet J, Skanderson M, Justice A, Fiellin D. The impact of prescribed opioids on CD4 cell count recovery among HIV‐infected patients newly initiating antiretroviral therapy. HIV Medicine 2016, 17: 728-739. PMID: 27186715, PMCID: PMC5053822, DOI: 10.1111/hiv.12377.Peer-Reviewed Original ResearchConceptsCD4 cell countBaseline CD4 cell countCell countPrescribed opioidsImmunosuppressive propertiesVeterans Aging Cohort Study (VACS) dataCD4 cell count recoveryAntiretroviral therapy responseCell count recoveryShort-term opioidsViral load suppressionCohort study dataOverall disease severityYear of initiationPrimary independent variableOpioid durationAntiretroviral therapyCount recoveryComorbid conditionsPharmacy dataOpioid propertiesTherapy responseOpioidsPatientsHIV
2003
Chapter 45 Macrophage migration inhibitory factor (MIF)
Arenberg D, Bucala R. Chapter 45 Macrophage migration inhibitory factor (MIF). 2003, II: 1037-xxxiii. DOI: 10.1016/b978-012689663-3/50049-1.Peer-Reviewed Original ResearchMacrophage migration inhibitory factorMigration inhibitory factorRegulation of MIFCritical pro-inflammatory mediatorInhibitory factorPro-inflammatory mediatorsMIF receptorImmune cellsImmunosuppressive propertiesCellular proliferationWidespread expressionMediatorsFuture investigationsCellsInflammationCytokinesGlucocorticoidsPathogenesisSteroidsSecretionActivityImportant roleReceptors
1995
MIF as a glucocorticoid-induced modulator of cytokine production
Calandra T, Bernhagen J, Metz C, Spiegel L, Bacher M, Donnelly T, Cerami A, Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature 1995, 377: 68-71. PMID: 7659164, DOI: 10.1038/377068a0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell LineCytokinesDexamethasoneEnzyme-Linked Immunosorbent AssayFemaleGlucocorticoidsHumansHydrocortisoneImmunityInflammationLipopolysaccharidesMacrophage ActivationMacrophage Migration-Inhibitory FactorsMacrophagesMiceMice, Inbred BALB CRatsRats, Sprague-DawleyRecombinant ProteinsShock, SepticT-LymphocytesConceptsMacrophage migration inhibitory factorCounter-regulatory systemsMigration inhibitory factorProtein macrophage migration inhibitory factorGlucocorticoid protectionLethal endotoxaemiaMIF productionCytokine productionCytokine secretionMacrophage cytokinesEndogenous mediatorsImmunosuppressive propertiesImmune responseGlucocorticoid hormonesInhibitory factorHormonal systemsCritical mediatorUnexpected findingMediatorsVital functionsEndotoxaemiaCytokinesGlucocorticoidsMonocytesPituitary
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply