2024
Recurrence-free survival after curative resection of non-small cell lung cancer between inhalational gas anesthesia and propofol-based total intravenous anesthesia: a multicenter, randomized, clinical trial (GAS TIVA trial): protocol description
Kim J, Yoon S, Song I, Lee K, Hwang W, Kim H, Lee D, Lim H, Kim S, Lee J, Hong B, Blank R, Pedoto A, Popescu W, Theresa G, Martin A, Patteril M, Pathanasethpong A, Thongsuk Y, Pisitpitayasaree T, Huang A, Yu H, Kapoor P, Kim K, Chi S, Ahn H. Recurrence-free survival after curative resection of non-small cell lung cancer between inhalational gas anesthesia and propofol-based total intravenous anesthesia: a multicenter, randomized, clinical trial (GAS TIVA trial): protocol description. Perioperative Medicine 2024, 13: 79. PMID: 39039548, PMCID: PMC11264408, DOI: 10.1186/s13741-024-00436-1.Peer-Reviewed Original ResearchNon-small cell lung cancerRecurrence-free survivalCurative resection of non-small cell lung cancerResection of non-small cell lung cancerCell lung cancerCurative resectionTotal intravenous anesthesiaPropofol-based total intravenous anesthesiaLung cancerRandomized trialsClinical trialsAnesthetic managementReducing cancer recurrence riskAmerican Society of Anesthesiologists physical statusPatient's written informed consentMicroscopic residual diseaseInstitutional review board approvalReduce tumor recurrenceLung resection surgeryMethodsThis double-blindInhibit tumor angiogenesisMulticenter randomized trialCancer recurrence riskCell-mediated immunityIntravenous anesthesiaEx Vivo Immunization: A Strategy for Immunization Against SARS-CoV-2
Singh H, Nuthalapati P, Yendapalli P, Sahu D. Ex Vivo Immunization: A Strategy for Immunization Against SARS-CoV-2. 2024, 258-271. DOI: 10.1039/bk9781837672813-00258.Peer-Reviewed Original ResearchPeripheral blood mononuclear cellsNatural killer cellsCell-mediated immunityBlood mononuclear cellsEnhanced immune responseNaive lymphocytesDendritic cellsKiller cellsT cellsAntigen presentationB cellsMononuclear cellsImmune responseSARS-nCoV-2Human hostSignaling cascadesSARS-CoV-2Global pandemic coronavirus diseaseVirion particlesImmunityMass immunizationAdverse effectsCoronavirus 2Pandemic coronavirus disease
2023
Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants
Moriyama M, Lucas C, Monteiro V, Initiative Y, Iwasaki A, Chen N, Breban M, Hahn A, Pham K, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Vogels C, Grubaugh N. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2221652120. PMID: 37036977, PMCID: PMC10120007, DOI: 10.1073/pnas.2221652120.Peer-Reviewed Original ResearchConceptsMHC-I expressionBreakthrough infectionsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsMajor histocompatibility complex class I expressionCell-mediated immunityInfluenza virus infectionSARS-CoV-2 VOCsMHC-I upregulationClass I expressionSARS-CoV-2T cell recognitionVirus infectionMHC II expressionSpike proteinEnhanced inhibitionInfectionCell recognitionCommon mutationsReinfectionE proteinAntibodiesViral genesSubvariantsExpression
2022
Tfh-cell-derived interleukin 21 sustains effector CD8+ T cell responses during chronic viral infection
Zander R, Kasmani MY, Chen Y, Topchyan P, Shen J, Zheng S, Burns R, Ingram J, Cui C, Joshi N, Craft J, Zajac A, Cui W. Tfh-cell-derived interleukin 21 sustains effector CD8+ T cell responses during chronic viral infection. Immunity 2022, 55: 475-493.e5. PMID: 35216666, PMCID: PMC8916994, DOI: 10.1016/j.immuni.2022.01.018.Peer-Reviewed Original ResearchConceptsChronic viral infectionsIL-21Cell responsesViral infectionMixed bone marrow chimera experimentsBone marrow chimera experimentsMemory-like subsetTfh cell responsesCell-mediated immunityTfh cellsEffector CD8LCMV infectionHelper subsetsInterleukin-21Th1 cellsViral controlCD8Chimera experimentsCD4InfectionCell differentiationCellsSubsetResponseDistinct populations
2020
Insights Into the Molecular and Cellular Underpinnings of Cutaneous T Cell Lymphoma.
Yumeen S, Girardi M. Insights Into the Molecular and Cellular Underpinnings of Cutaneous T Cell Lymphoma. The Yale Journal Of Biology And Medicine 2020, 93: 111-121. PMID: 32226341, PMCID: PMC7087059.Peer-Reviewed Original ResearchConceptsGenomic copy number alterationsSingle nucleotide variantsCutaneous T-cell lymphomaCellular underpinningsJAK-STAT activationT-cell lymphomaT lymphocytesCopy number alterationsCTCL cellsSeries of alterationsWhole-exome sequencingCell lymphomaApoptosis resistanceNucleotide variantsOncogenic behaviorPathophysiology of CTCLSkin-homing T lymphocytesT cell activationCell expansionNumber alterationsCTCL pathogenesisGenetic alterationsGenomic alterationsCell-mediated immunityTherapeutic discoveryStaphylococcus aureus α-toxin suppresses antigen-specific T cell responses
Lee B, Olaniyi R, Kwiecinski JM, Wardenburg JB. Staphylococcus aureus α-toxin suppresses antigen-specific T cell responses. Journal Of Clinical Investigation 2020, 130: 1122-1127. PMID: 31873074, PMCID: PMC7269593, DOI: 10.1172/jci130728.Peer-Reviewed Original ResearchConceptsT cell responsesSkin infectionsCell responsesAntigen-specific T cell responsesOVA-specific T cell responsesT cell-mediated immunityS. aureusΑ-toxinAntigen-specific modelChicken egg OVACell-mediated immunityT cell memoryAntigen-specific memoryPrimary skin infectionsInvasive staphylococcal diseaseStaphylococcus aureus α-toxinDevelopment of immunityΑ-toxin expressionAureus α-toxinProtective immunityInvasive infectionsLeading causeLoss of DCsStaphylococcal diseaseLong-term protection
2017
2168
Branagan A, Duffy E, Parker T, Seropian S, Foster C, Zhang L, Verma R, Gan G, Zelterman D, Brandt D, Kortmansky J, Witt D, Dhodapkar M. 2168. Journal Of Clinical And Translational Science 2017, 1: 31-32. PMCID: PMC6799516, DOI: 10.1017/cts.2017.118.Peer-Reviewed Original ResearchPlasma cell disordersInfluenza vaccination strategiesInfluenza vaccinationInfluenza infection ratesVaccination strategiesCell disordersInfluenza infectionClinical correlatesInfection rateInfluenza vaccineRandomized studySingle vaccineDisorder patientsFlu seasonGrade 2 adverse eventsHigh-dose influenza vaccinationHigh-dose influenza vaccineLaboratory-confirmed influenza infectionHigh-dose vaccineSerologic response rateCell-mediated immunityFlu-like illnessNovel vaccination strategiesT cell subpopulationsT cell responsiveness
2016
Lower Rates of Influenza Infection Following Two Dose Series of High Dose Vaccination in Plasma Cell Disorders: Results of a Randomized, Double-Blind, Placebo-Assisted Clinical Trial
Branagan A, Duffy E, Parker T, Seropian S, Foster C, Zhang L, Verma R, Zelterman D, Gan G, Brandt D, Kortmansky J, Witt D, Ferencz T, Dhodapkar M. Lower Rates of Influenza Infection Following Two Dose Series of High Dose Vaccination in Plasma Cell Disorders: Results of a Randomized, Double-Blind, Placebo-Assisted Clinical Trial. Blood 2016, 128: 2139. DOI: 10.1182/blood.v128.22.2139.2139.Peer-Reviewed Original ResearchHigh-dose influenza vaccinePlasma cell disordersInfluenza vaccinationCell-mediated immunityInfluenza vaccineInfluenza infectionCell disordersClinical correlatesVaccination strategiesPCD patientsRandomized studySingle vaccineClinical trialsDose seriesFlu seasonInfection rateHigh-dose influenza vaccinationLaboratory-confirmed influenza infectionTwo-dose vaccination strategyHigh-dose vaccinationHigh-dose vaccineInfluenza vaccination strategiesPresent randomized studySerologic response rateSeasonal influenza vaccination
2015
Fluzone® High-Dose Influenza Vaccine with a Booster Is Associated with Low Rates of Influenza Infection in Patients with Plasma Cell Disorders
Branagan A, Duffy E, Boddupall C, Albrecht R, Zhang L, Verma R, Cooper D, Seropian S, Parker T, Yao X, Ferencz T, Dhodapkar M. Fluzone® High-Dose Influenza Vaccine with a Booster Is Associated with Low Rates of Influenza Infection in Patients with Plasma Cell Disorders. Blood 2015, 126: 3058. DOI: 10.1182/blood.v126.23.3058.3058.Peer-Reviewed Original ResearchHigh-dose influenza vaccineHigh-dose vaccinePlasma cell disordersNovel vaccination strategiesProtective HAI titersCell-mediated immunityMultiple myeloma patientsNovel vaccine strategiesInfluenza vaccineVaccination strategiesSignificant unmet needInfluenza vaccinationHAI titersPCD patientsCell disordersFlu seasonSecondary endpointsSeroprotection ratesDose vaccineMyeloma patientsVaccine strategiesFlu infectionUnmet needInfection rateGrade 2 adverse events
2009
Bcl6 and Blimp-1 Are Reciprocal and Antagonistic Regulators of T Follicular Helper Cell Differentiation
Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J, Crotty S. Bcl6 and Blimp-1 Are Reciprocal and Antagonistic Regulators of T Follicular Helper Cell Differentiation. Science 2009, 325: 1006-1010. PMID: 19608860, PMCID: PMC2766560, DOI: 10.1126/science.1175870.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody FormationArenaviridae InfectionsB-LymphocytesCD4-Positive T-LymphocytesCell DifferentiationCell LineageCytokinesDNA-Binding ProteinsGene Expression RegulationGerminal CenterLymphocyte ActivationLymphocytic choriomeningitis virusMiceMice, Inbred C57BLMice, TransgenicPositive Regulatory Domain I-Binding Factor 1Proto-Oncogene Proteins c-bcl-6RNA, MessengerSignal TransductionT-Lymphocyte SubsetsT-Lymphocytes, Helper-InducerTranscription FactorsConceptsAntibody responseT cellsBlimp-1B cell germinal centersEffector T cell subsetsFollicular helper cell differentiationT Follicular Helper Cell DifferentiationFollicular helper cellsB cell-mediated immunityCell-mediated immunityT cell subsetsB cell responsesT cell helpTranscription factor Blimp-1Transcription factor Bcl6Helper cell differentiationDistinct CD4Cell subsetsHelper cellsCell helpGerminal centersB cellsCell responsesCD4BCL6Chapter 1 Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity
Cohen N, Garg S, Brenner M. Chapter 1 Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity. Advances In Immunology 2009, 102: 1-94. PMID: 19477319, DOI: 10.1016/s0065-2776(09)01201-2.Peer-Reviewed Original ResearchConceptsInvariant natural killer TInvariant natural killer T cellsCD1d-restricted T cellsLipid antigensT cell receptorT cellsSemi-invariant T cell receptorBinding lipid antigensCD1-restricted T cellsCell surfaceActivate iNKT cellsRange of pathogensGammadelta T-cell receptorT cell-deficient miceImmune responseNatural killer TCD1 familyCD1 isoformsT cell subsetsContext of microbial infectionEndocytic compartmentsClearance of pathogensINKT cellsCD1 moleculesCell-mediated immunity
2004
T cell responses to Listeria monocytogenes
Lara-Tejero M, Pamer EG. T cell responses to Listeria monocytogenes. Current Opinion In Microbiology 2004, 7: 45-50. PMID: 15036139, DOI: 10.1016/j.mib.2003.12.002.Peer-Reviewed Original ResearchConceptsCD8 responsesIntracellular biologyAvailability of mutantsCell-mediated immunityT cell responsesCD4 T cellsHost cell cytosolInnate immune systemT cellsImmune systemCell cytosolListeria monocytogenesCell responsesMicrobial pathogensBiologyPathogensL. monocytogenesMonocytogenesResponseMutantsImmunityCytosol
2003
Memory CD4+ T cells do not induce graft-versus-host disease
Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ, Shlomchik WD. Memory CD4+ T cells do not induce graft-versus-host disease. Journal Of Clinical Investigation 2003, 112: 101-108. PMID: 12840064, PMCID: PMC162285, DOI: 10.1172/jci17601.Peer-Reviewed Original ResearchConceptsDonor T cellsMemory CD4 cellsMemory T cellsT cellsHost diseaseCD4 cellsMemory T cell depletionPost-transplant immune reconstitutionAllogeneic stem cell transplantationT cell-mediated immunityT-cell depletionCell-mediated immunityRegulatory T cellsStem cell transplantationStem cell graftsGVHD prophylaxisHistologic GVHDLess GVHDMurine resultsImmune reconstitutionLeukemia effectMemory CD4Naive CD4Cell depletionCell transplantation
2001
CD4+ T Helper 1 Cells Facilitate Regression of Murine Lyme Carditis
Bockenstedt L, Kang I, Chang C, Persing D, Hayday A, Barthold S. CD4+ T Helper 1 Cells Facilitate Regression of Murine Lyme Carditis. Infection And Immunity 2001, 69: 5264-5269. PMID: 11500394, PMCID: PMC98634, DOI: 10.1128/iai.69.9.5264-5269.2001.Peer-Reviewed Original ResearchConceptsAlphabeta T-cell-deficient miceT cell-deficient miceMurine Lyme carditisT cellsLyme carditisB cellsT helper 1 cellsAnti-inflammatory cytokines mRNA levelsTumor necrosis factor alphaBurgdorferi-specific antibodiesInfected control miceProminent macrophage infiltrateCell-mediated immunityT cell responsesT helper 1Murine Lyme borreliosisCytokine mRNA levelsNecrosis factor alphaAlphabeta T cellsPrincipal immune cellsMouse strain backgroundAdoptive transferAcute arthritisMacrophage infiltratesControl mice
2000
Osteopontin (Eta-1) in cell-mediated immunity: teaching an old dog new tricks
O'Regan A, Nau G, Chupp G, Berman J. Osteopontin (Eta-1) in cell-mediated immunity: teaching an old dog new tricks. Trends In Immunology 2000, 21: 475-478. PMID: 11071524, DOI: 10.1016/s0167-5699(00)01715-1.Peer-Reviewed Original ResearchRequirement for CD4+ T Lymphocytes in Host Resistance against Cryptococcus neoformans in the Central Nervous System of Immunized Mice
Buchanan K, Doyle H. Requirement for CD4+ T Lymphocytes in Host Resistance against Cryptococcus neoformans in the Central Nervous System of Immunized Mice. Infection And Immunity 2000, 68: 456-462. PMID: 10639404, PMCID: PMC97163, DOI: 10.1128/iai.68.2.456-462.2000.Peer-Reviewed Original ResearchConceptsCentral nervous systemCell-mediated immunityImmune miceT cellsT lymphocytesNervous systemRole of CMIC. neoformansCryptococcus neoformansProtective mechanismT cell numbersSpinal cord homogenateCMI responsesCNS infectionsCryptococcal meningitisLeukocyte accumulationAIDS patientsFatal outcomeImmunized miceVivo depletionCord homogenateIFN-gammaMurine modelHost resistanceCytometric analysis
1998
Antibodies against mesangial cells and their secretory products in chronic renal allograft rejection in the rat.
Paul L, Muralidharan J, Muzaffar S, Manting E, Valentin J, de Heer E, Kashgarian M. Antibodies against mesangial cells and their secretory products in chronic renal allograft rejection in the rat. American Journal Of Pathology 1998, 152: 1209-23. PMID: 9588890, PMCID: PMC1858589.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoantibodiesAutoantigensBasement MembraneBiglycanBlotting, WesternCells, CulturedChronic DiseaseDecorinEndothelium, VascularExtracellular Matrix ProteinsFlow CytometryFluorescent Antibody Technique, IndirectGlomerular MesangiumGraft RejectionKidney TransplantationMaleProteoglycansRatsRats, Inbred F344Rats, Inbred LewTransplantation, HomologousConceptsMesangial cell culture supernatantsChronic renal allograft rejectionRenal allograft rejectionMesangial cellsChronic rejectionAllograft rejectionCell culture supernatantsChronic renal transplant rejectionFlow cytometryWestern blotEndothelial cellsGlomerular basement membrane antigenPost-transplant seraRenal transplant rejectionCell-mediated immunityPost-immunization seraPresence of antibodiesMesangial cell surfaceStrong autoantibody responseCulture supernatantsCultured mesangial cellsIndirect immunofluorescent studiesBasement membrane antigensIndirect immunofluorescent stainingTissue repair process
1986
Cell-mediated immunity to myelin-associated glycoprotein, proteolipid protein, and myelin basic protein in multiple sclerosis
Johnson D, Hafler D, Fallis R, Lees M, Brady R, Quarles R, Weiner H. Cell-mediated immunity to myelin-associated glycoprotein, proteolipid protein, and myelin basic protein in multiple sclerosis. Journal Of Neuroimmunology 1986, 13: 99-108. PMID: 2428837, DOI: 10.1016/0165-5728(86)90053-6.Peer-Reviewed Original ResearchConceptsActive MS patientsMyelin basic proteinPeripheral blood lymphocytesMyelin antigensMS patientsControl subjectsActive MSMultiple sclerosisNeurologic diseaseProteolipid proteinStable multiple sclerosis patientsMean proliferative responseCell-mediated immunityMultiple sclerosis patientsBasic proteinStable MSOND groupSclerosis patientsT8 subsetsBlood lymphocytesLymphocyte stimulationProliferative responseProportion of individualsPatientsAntigen
1979
Effects of Thymosin Fraction 5 in Cancer Patients: In Vitro Studies and Correlations with Clinical Course in Patients Receiving Thymosin
Chretien P, Lipson S, Makuch R, Kenady D, Snyder J, Cohen M. Effects of Thymosin Fraction 5 in Cancer Patients: In Vitro Studies and Correlations with Clinical Course in Patients Receiving Thymosin. 1979, 159-166. DOI: 10.1016/b978-0-08-023194-5.50023-1.Peer-Reviewed Original ResearchT cell levelsThymosin fraction 5Cancer patientsClinical coursePatient groupT cellsLow CEA levelWeeks of therapyCell-mediated immunityEffect of thymosinSmall cell carcinomaSuch patient groupsComplete tumor remissionFraction 5Certain serum glycoproteinsSimilar groupsAdjuvant treatmentIntensive chemotherapyImmunologic effectsCEA levelsFurther therapyImmune defectsCellular immunityCell carcinomaTumor remission
1975
A laboratory model for the study of the immunobiology of osteosarcoma
Friedlaender G, Mitchell M. A laboratory model for the study of the immunobiology of osteosarcoma. Cancer 1975, 36: 1631-1639. PMID: 172215, DOI: 10.1002/1097-0142(197511)36:5<1631::aid-cncr2820360516>3.0.co;2-w.Peer-Reviewed Original ResearchConceptsCell-mediated immunityRegression of diseaseWistar-Lewis ratsMoloney sarcomasMoloney sarcoma virusProgressive diseaseClinical courseLung metastasesMicrocytotoxicity assayTreatment protocolImmune responseImmunologic similaritiesHuman osteosarcomaSerum factorsTumor cellsMarrow cavityOsteosarcomaTarget cellsRatsTumorsDiseaseSarcoma virusAnimalsWeeks of inoculationTissue culture
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply