2025
Mucosal unadjuvanted booster vaccines elicit local IgA responses by conversion of pre-existing immunity in mice
Kwon D, Mao T, Israelow B, Santos Guedes de Sá K, Dong H, Iwasaki A. Mucosal unadjuvanted booster vaccines elicit local IgA responses by conversion of pre-existing immunity in mice. Nature Immunology 2025, 26: 908-919. PMID: 40360777, PMCID: PMC12133566, DOI: 10.1038/s41590-025-02156-0.Peer-Reviewed Original ResearchMucosal immunityIgA responsesMemory CD4+ T cellsInduce robust mucosal immunitySARS-CoV-2 spike proteinCD4+ T cellsLocal protective immune responseRobust mucosal immunityRespiratory tractMRNA-LNP vaccinesIgA-secreting plasma cellsB cell recruitmentInduce mucosal immunityPre-existing immunityProtective immune responsesLower respiratory tractRecombinant SARS-CoV-2 spike proteinLocal IgA responseIntranasal boosterMucosal boostingIntranasal boostSpike proteinMRNA-LNPChemokines CXCL9T cellsSupervised fine-tuning of pre-trained antibody language models improves antigen specificity prediction
Wang M, Patsenker J, Li H, Kluger Y, Kleinstein S. Supervised fine-tuning of pre-trained antibody language models improves antigen specificity prediction. PLOS Computational Biology 2025, 21: e1012153. PMID: 40163503, PMCID: PMC12013870, DOI: 10.1371/journal.pcbi.1012153.Peer-Reviewed Original ResearchConceptsSupervised fine-tuningImmune responseMolecular basis of antigen recognitionSARS-CoV-2 spike proteinLanguage modelSARS-CoV-2 vaccinesAdaptive immune responsesSpecific predictionsMolecular basisSpike proteinAntibody-based therapeuticsFine-tuningAntibody-antigen specificitySpecific to antigensInfluenza hemagglutininVaccine designAntigen recognitionModel embeddingsImmune functionLanguage model embeddingsSARS-CoV-2AntibodiesAntigenInfluenzaVaccine
2024
A substitution at the cytoplasmic tail of the spike protein enhances SARS-CoV-2 infectivity and immunogenicity
Li Y, Zhang X, Tai W, Zhuang X, Shi H, Liao S, Yu X, Mei R, Chen X, Huang Y, Liu Y, Liu J, Liu Y, Zhu Y, Wang P, Tian M, Yu G, Li L, Cheng G. A substitution at the cytoplasmic tail of the spike protein enhances SARS-CoV-2 infectivity and immunogenicity. EBioMedicine 2024, 110: 105437. PMID: 39531918, PMCID: PMC11603013, DOI: 10.1016/j.ebiom.2024.105437.Peer-Reviewed Original ResearchS proteinCytoplasmic tailFERM-binding motifTrans-complementation systemSpike proteinAmino acid substitutionsProline-to-leucine substitutionSystematic bioinformatics analysisHigh-frequency mutationsSARS-CoV-2 virionsBinding motifAcid substitutionsSARS-CoV-2Natural selectionBioinformatics analysisEzrin/radixin/moesin proteinsMolecular mechanismsMutationsOmicron variantProteinVaccine developmentMRNA vaccinesGlobal disseminationSARS-CoV-2 Omicron sublineagesSublineagesBeta Spike-Presenting SARS-CoV-2 Virus-like Particle Vaccine Confers Broad Protection against Other VOCs in Mice
Ullah I, Symmes K, Keita K, Zhu L, Grunst M, Li W, Mothes W, Kumar P, Uchil P. Beta Spike-Presenting SARS-CoV-2 Virus-like Particle Vaccine Confers Broad Protection against Other VOCs in Mice. Vaccines 2024, 12: 1007. PMID: 39340037, PMCID: PMC11435481, DOI: 10.3390/vaccines12091007.Peer-Reviewed Original ResearchImmune responseVirus-like particlesBeta spikesCross-protective immune responsesSARS-CoV-2 immunitySARS-CoV-2Effective immune responseEffective humoral immune responseHumoral immune responseAncestral spikeT cellsVaccination regimenSARS-CoV-2 virus-like particlesVaccine platformMouse modelVariant spike proteinsOmicron spikeBeta variantDisease burdenNon-infectiousReduce virus spreadImmunityVariant spikesFusion glycoproteinSpike protein
2023
Beluga whale and bottlenose dolphin ACE2 proteins allow cell entry mediated by spike protein from three variants of SARS-CoV-2
Stone H, Unal E, Romano T, Turner P. Beluga whale and bottlenose dolphin ACE2 proteins allow cell entry mediated by spike protein from three variants of SARS-CoV-2. Biology Letters 2023, 19: 20230321. PMID: 38053365, PMCID: PMC10698476, DOI: 10.1098/rsbl.2023.0321.Peer-Reviewed Original ResearchConceptsAngiotensin-converting enzyme 2Beluga whalesCell entrySpike proteinSpillover of SARS-CoV-2SARS-CoV-2 spike proteinWuhan-Hu-1Formation of social groupsSARS-CoV-2Susceptibility to virus infectionHost individualsAnimal hostsVariants of SARS-CoV-2Pandemic isolatesBottlenose dolphinsACE2 proteinCellular receptorsContact with humansBelugaPotential threatDolphinsProteinAnimal reservoirsEnzyme 2Mammal reservoirsSialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19
Scheim D, Vottero P, Santin A, Hirsh A. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. International Journal Of Molecular Sciences 2023, 24: 17039. PMID: 38069362, PMCID: PMC10871123, DOI: 10.3390/ijms242317039.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 spike proteinRed blood cellsCOVID-19Severe COVID-19 patientsSpike proteinSevere COVID-19COVID-19 correlatesCOVID-19 patientsCommon cold infectionsCOVID-19 morbidityLong-COVID patientsFuture therapeutic strategiesSARS-CoV-2Key risk factorsKey morbiditiesSurface of plateletsSevere morbidityClinical efficacyVascular damageViral loadMicrovascular occlusionRisk factorsCOVID patientsClinical studiesClinical susceptibilityCalreticulin Regulates SARS-CoV-2 Spike Protein Turnover and Modulates SARS-CoV-2 Infectivity
Rahimi N, White M, Amraei R, Lotfollahzadeh S, Xia C, Michalak M, Costello C, Mühlberger E. Calreticulin Regulates SARS-CoV-2 Spike Protein Turnover and Modulates SARS-CoV-2 Infectivity. Cells 2023, 12: 2694. PMID: 38067122, PMCID: PMC10705507, DOI: 10.3390/cells12232694.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectivityCardiovascular complicationsS-RBDSARS-CoV-2 infectionEndothelial cellsMajor clinical hallmarksSpike proteinCOVID-19 patientsCoronavirus disease 2019SARS-CoV-2 spike proteinSARS-CoV-2S proteinProteasomal inhibitor bortezomibHuman endothelial cellsShRNA-mediated knockdownCalcium hemostasisClinical hallmarkDisease 2019Inhibitor bortezomibCalcium homeostasisAcidification of lysosomesRole of calreticulinTreatment of cellsProtein levelsComplicationsImmunogenicity and Pre-Clinical Efficacy of an OMV-Based SARS-CoV-2 Vaccine
Grandi A, Tomasi M, Ullah I, Bertelli C, Vanzo T, Accordini S, Gagliardi A, Zanella I, Benedet M, Corbellari R, Di Lascio G, Tamburini S, Caproni E, Croia L, Ravà M, Fumagalli V, Di Lucia P, Marotta D, Sala E, Iannacone M, Kumar P, Mothes W, Uchil P, Cherepanov P, Bolognesi M, Pizzato M, Grandi G. Immunogenicity and Pre-Clinical Efficacy of an OMV-Based SARS-CoV-2 Vaccine. Vaccines 2023, 11: 1546. PMID: 37896949, PMCID: PMC10610814, DOI: 10.3390/vaccines11101546.Peer-Reviewed Original ResearchSARS-CoV-2 vaccinesSARS-CoV-2Outer membrane vesiclesImmune responseSARS-CoV-2 elicitsSARS-CoV-2 variantsPotent immune responsesEffective immune responsePre-clinical efficacyDiverse SARS-CoV-2 variantsInherent adjuvanticityVaccinated miceIntranasal challengeVaccine dosesNeutralization titresEffective vaccineVirus infectionVaccination campaignHeterologous antigensVaccineVirus replicationSpike proteinInfectivity assaysTitresPotential needDistinguishing SARS-CoV-2 infection and vaccine responses up to 18 months post-infection using nucleocapsid protein and receptor-binding domain antibodies
Jarlhelt I, Pérez-Alós L, Bayarri-Olmos R, Hansen C, Petersen M, Weihe P, Armenteros J, Madsen J, Nielsen J, Hilsted L, Iversen K, Bundgaard H, Nielsen S, Garred P. Distinguishing SARS-CoV-2 infection and vaccine responses up to 18 months post-infection using nucleocapsid protein and receptor-binding domain antibodies. Microbiology Spectrum 2023, 11: e01796-23. PMID: 37738355, PMCID: PMC10580960, DOI: 10.1128/spectrum.01796-23.Peer-Reviewed Original ResearchSARS-CoV-2 infectionLong-term humoral immunitySARS-CoV-2 IgCOVID-19 vaccineInfection-induced immunityAntibody responseReceptor-binding domainSARS-CoV-2Viral spike proteinHumoral immunityImmune responseSARS-CoV-2 antibody responseInfected individualsInfection-induced immune responsesReceptor-binding domain antibodiesSpecific IgLong-term immune responseDurability of immunitySpike proteinProtective antibody responsesSandwich ELISACOVID-19 infectionGeneralized mixed modelNew significant increaseS proteinComputational Prediction of the Interaction of Ivermectin with Fibrinogen
Vottero P, Tavernini S, Santin A, Scheim D, Tuszynski J, Aminpour M. Computational Prediction of the Interaction of Ivermectin with Fibrinogen. International Journal Of Molecular Sciences 2023, 24: 11449. PMID: 37511206, PMCID: PMC10380762, DOI: 10.3390/ijms241411449.Peer-Reviewed Original ResearchConceptsSpike proteinSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Acute COVID-19Coagulation factor fibrinogenSyndrome coronavirus 2Interactions of ivermectinBlood coagulation factor fibrinogenSARS-CoV-2 spike proteinAbnormal blood clotsAntiparasitic drug ivermectinLong COVIDFactors fibrinogenCoronavirus 2Proinflammatory activityClot propertiesPathologic thrombosisClot formationBlood clotsDrug ivermectinIvermectinFibrinogen peptidesFibrin clotsCOVID-19Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants
Moriyama M, Lucas C, Monteiro V, Initiative Y, Iwasaki A, Chen N, Breban M, Hahn A, Pham K, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Vogels C, Grubaugh N. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2221652120. PMID: 37036977, PMCID: PMC10120007, DOI: 10.1073/pnas.2221652120.Peer-Reviewed Original ResearchConceptsMHC-I expressionBreakthrough infectionsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsMajor histocompatibility complex class I expressionCell-mediated immunityInfluenza virus infectionSARS-CoV-2 VOCsMHC-I upregulationClass I expressionSARS-CoV-2T cell recognitionVirus infectionMHC II expressionSpike proteinEnhanced inhibitionInfectionCell recognitionCommon mutationsReinfectionE proteinAntibodiesViral genesSubvariantsExpressionDesigning and developing a sensitive and specific SARS-CoV-2 RBD IgG detection kit for identifying positive human samples
Raoufi E, Hosseini F, Onagh B, Salehi-Shadkami M, Mehrali M, Mohsenzadegan M, Ho J, Bigdelou B, Sepand M, Webster T, Zanganeh S, Farajollahi M. Designing and developing a sensitive and specific SARS-CoV-2 RBD IgG detection kit for identifying positive human samples. Clinica Chimica Acta 2023, 542: 117279. PMID: 36871661, PMCID: PMC9985519, DOI: 10.1016/j.cca.2023.117279.Peer-Reviewed Original ResearchConceptsReceptor-binding domainPichia pastorisIon-exchange chromatographyShake flask cultivationRecombinant receptor-binding domainSARS-CoV-2 spike proteinBioreactor cultivationsIndirect enzyme-linked immunoassayBinding domainSARS-CoV-2Target proteinsProtein productionTarget genesAntigenic regionsEnzyme-linked immunoassaySpike proteinProteinReceptor binding domain antigensDetection kitEpitope analysisHuman samplesEnzyme-linked immunoassay testImmunological developmentCultivationHuman serum
2022
Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein
Lapidus S, Liu F, Casanovas-Massana A, Dai Y, Huck J, Lucas C, Klein J, Filler R, Strine M, Sy M, Deme A, Badiane A, Dieye B, Ndiaye I, Diedhiou Y, Mbaye A, Diagne C, Vigan-Womas I, Mbengue A, Sadio B, Diagne M, Moore A, Mangou K, Diallo F, Sene S, Pouye M, Faye R, Diouf B, Nery N, Costa F, Reis M, Muenker M, Hodson D, Mbarga Y, Katz B, Andrews J, Campbell M, Srivathsan A, Kamath K, Baum-Jones E, Faye O, Sall A, Vélez J, Cappello M, Wilson M, Ben-Mamoun C, Tedder R, McClure M, Cherepanov P, Somé F, Dabiré R, Moukoko C, Ouédraogo J, Boum Y, Shon J, Ndiaye D, Wisnewski A, Parikh S, Iwasaki A, Wilen C, Ko A, Ring A, Bei A. Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein. Scientific Reports 2022, 12: 22175. PMID: 36550362, PMCID: PMC9778468, DOI: 10.1038/s41598-022-26709-7.Peer-Reviewed Original ResearchConceptsCross-reactive antibodiesSARS-CoV-2Positive SARS-CoV-2 antibody resultsPositive SARS-CoV-2 antibodiesSARS-CoV-2 reactivitySARS-CoV-2 antibodiesAcute malaria infectionSpike proteinAntibody test resultsPre-pandemic samplesMalaria-endemic countriesPopulation-level immunityMalaria-endemic regionsSpike S1 subunitNon-endemic countriesSARS-CoV-2 spike proteinSARS-CoV-2 proteinsPopulation-level exposureCOVID-19 transmissionMalaria exposureFalse-positive resultsMalaria infectionDisease burdenPlasmodium infectionAntibody resultsIdentification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations
Fredericks A, East K, Shi Y, Liu J, Maschietto F, Ayala A, Cioffi W, Cohen M, Fairbrother W, Lefort C, Nau G, Levy M, Wang J, Batista V, Lisi G, Monaghan S. Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations. Frontiers In Molecular Biosciences 2022, 9: 1080964. PMID: 36589229, PMCID: PMC9800910, DOI: 10.3389/fmolb.2022.1080964.Peer-Reviewed Original ResearchCOVID-19 patientsSARS-CoV-2Severe acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Spike proteinSevere COVID-19Intensive care unitSyndrome coronavirus 2RNA sequencingCertain immune responsesCOVID-19 infectionSARS-CoV-2 spike proteinEffectiveness of treatmentDeep RNA sequencingICU admissionCare unitSingle centerCoronavirus 2Peripheral bloodMultiple time pointsClinical dataImmune responseEarly infection timesSpecific NAbsUnadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses
Mao T, Israelow B, Peña-Hernández MA, Suberi A, Zhou L, Luyten S, Reschke M, Dong H, Homer RJ, Saltzman WM, Iwasaki A. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 2022, 378: eabo2523. PMID: 36302057, PMCID: PMC9798903, DOI: 10.1126/science.abo2523.Peer-Reviewed Original ResearchConceptsRespiratory mucosaSystemic immunityLethal SARS-CoV-2 infectionAcute respiratory syndrome coronavirus 2 pandemicSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemicSARS-CoV-2 infectionProtective mucosal immunityCross-reactive immunityT cell responsesCoronavirus 2 pandemicPrimary vaccinationParenteral vaccinesMucosal immunityVaccine strategiesRespiratory tractImmunoglobulin AMemory BImmune memoryPartial immunityCell responsesPoor immunityImmunitySpike proteinMucosaVaccineGenetics, structure, transmission, epidemiology, immune response, and vaccine efficacies of the SARS‐CoV‐2 Delta variant: A comprehensive review
Li H, Arcalas C, Song J, Rahmati M, Park S, Koyanagi A, Lee S, Yon D, Shin J, Smith L. Genetics, structure, transmission, epidemiology, immune response, and vaccine efficacies of the SARS‐CoV‐2 Delta variant: A comprehensive review. Reviews In Medical Virology 2022, 33: e2408. PMID: 36420676, DOI: 10.1002/rmv.2408.Peer-Reviewed Original ResearchConceptsVaccine efficacyDelta variantSARS-CoV-2Enhanced immune escapeLikelihood of severe illnessClinical courseImmune escapeViral loadSevere acute respiratory syndrome coronavirus 2Inflammatory phenotypeAcute respiratory syndrome coronavirus 2ACE-2 receptorRespiratory syndrome coronavirus 2SARS-CoV-2 Delta variantImmune responseSyndrome coronavirus 2Vaccine immunitySevere illnessAntibody neutralisationPredominant variantNarrative reviewVaccineOmicron variantCoronavirus 2Spike proteinSupported Natural Membranes on Microspheres for Protein–Protein Interaction Studies
Cheppali S, Dharan R, Katzenelson R, Sorkin R. Supported Natural Membranes on Microspheres for Protein–Protein Interaction Studies. ACS Applied Materials & Interfaces 2022, 14: 49532-49541. PMID: 36306148, DOI: 10.1021/acsami.2c13095.Peer-Reviewed Original ResearchMembrane proteinsProtein-protein interaction studiesPlasma membraneMembrane-related biological processesProtein-membrane interaction studiesSpike proteinEukaryotic plasma membraneProtein of SARS-CoV-2Cell-cell communicationSpike protein of SARS-CoV-2Interaction studiesReceptor-binding domainBinding domainMembrane biologyBiological processesNatural membranesMembrane model systemsMembrane componentsMembrane bilayerNative membrane componentsProteinExtracellular vesiclesCorrect orientationBiophysical questionsHuman receptorLRRC15 inhibits SARS-CoV-2 cellular entry in trans
Song J, Chow RD, Peña-Hernández MA, Zhang L, Loeb SA, So EY, Liang OD, Ren P, Chen S, Wilen CB, Lee S. LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLOS Biology 2022, 20: e3001805. PMID: 36228039, PMCID: PMC9595563, DOI: 10.1371/journal.pbio.3001805.Peer-Reviewed Original ResearchConceptsExpression of LRRC15Receptor-binding domainViral entryAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSARS-CoV-2 cellular entrySyndrome coronavirus 2 infectionSARS-CoV-2 entrySpike-mediated entryCoronavirus 2 infectionCOVID-19 patientsCellular entry factorsSARS-CoV-2Attachment factorsACE2-negative cellsEnzyme 2Receptor angiotensinEntry factorsProtective roleLRRC15Spike proteinSame cell typeCRISPR activation screensACE2Cellular entryHow to correct relative voxel scale factors for calculations of vector-difference Fourier maps in cryo-EM
Wang J, Liu J, Gisriel CJ, Wu S, Maschietto F, Flesher DA, Lolis E, Lisi GP, Brudvig GW, Xiong Y, Batista VS. How to correct relative voxel scale factors for calculations of vector-difference Fourier maps in cryo-EM. Journal Of Structural Biology 2022, 214: 107902. PMID: 36202310, PMCID: PMC10226527, DOI: 10.1016/j.jsb.2022.107902.Peer-Reviewed Original ResearchConceptsCryo-EM mapsAmino acid residuesAcid residuesCryo-electron microscopy mapIndividual amino acid residuesCyanobacteria Synechocystis spPCC 6803Synechocystis spMicroscopy mapsThermosynechococcus elongatusSARS-CoV-2 spike proteinLocal structural changesResiduesSpike proteinAtomic coordinatesElongatusSubunitsSpeciesProteinSpSimilar structureStructural changesTargeted protein S-nitrosylation of ACE2 inhibits SARS-CoV-2 infection
Oh C, Nakamura T, Beutler N, Zhang X, Piña-Crespo J, Talantova M, Ghatak S, Trudler D, Carnevale L, McKercher S, Bakowski M, Diedrich J, Roberts A, Woods A, Chi V, Gupta A, Rosenfeld M, Kearns F, Casalino L, Shaabani N, Liu H, Wilson I, Amaro R, Burton D, Yates J, Becker C, Rogers T, Chatterjee A, Lipton S. Targeted protein S-nitrosylation of ACE2 inhibits SARS-CoV-2 infection. Nature Chemical Biology 2022, 19: 275-283. PMID: 36175661, PMCID: PMC10127945, DOI: 10.1038/s41589-022-01149-6.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionViral entrySevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Coronavirus disease 2019 (COVID-19) pandemicSyndrome coronavirus 2Prevention of infectionSARS-CoV-2 spike proteinDisease 2019 pandemicSpread of infectionCoronavirus 2Channel blockadeS-nitrosylationEnzyme 2Binding of ACE2InfectionSpike proteinACE2Envelope proteinProtein S-nitrosylationIon channelsNon-toxic compoundsNovel avenuesAngiotensin
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply