2024
Nogo-B inhibition facilitates cholesterol metabolism to reduce hypercholesterolemia
Xue C, Zeng P, Gong K, Li Q, Feng Z, Wang M, Chen S, Yang Y, Li J, Zhang S, Yin Z, Liang Y, Yan T, Yu M, Feng K, Zhao D, Yang X, Zhang X, Ma L, Iwakiri Y, Chen L, Tang X, Chen Y, Chen H, Duan Y. Nogo-B inhibition facilitates cholesterol metabolism to reduce hypercholesterolemia. Cell Reports 2024, 43: 114691. PMID: 39235944, DOI: 10.1016/j.celrep.2024.114691.Peer-Reviewed Original ResearchLow-density lipoprotein receptorNogo-BCholesterol levelsCellular cholesterol levelsCholesterol excretionDecreased cellular cholesterol levelsATP-binding cassette transportersLiver x receptor-aHepatic uptakeLow-density lipoprotein receptor expressionCholesterol metabolic processHepatic cholesterol uptakeNogo-B expressionLowering cholesterol levelsMetabolic processesCassette transportersLipoprotein receptorApolipoprotein ELower cholesterol levelsCholesterol metabolismCholesterol uptakeDecreased cholesterol levelsReduce hypercholesterolemiaMolecular targetsExcretion
2017
Structural basis of MsbA-mediated lipopolysaccharide transport
Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 2017, 549: 233-237. PMID: 28869968, PMCID: PMC5759761, DOI: 10.1038/nature23649.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateATP-Binding Cassette TransportersBacterial ProteinsBiological TransportCell MembraneCryoelectron MicroscopyEscherichia coliHydrophobic and Hydrophilic InteractionsLipid BilayersLipopolysaccharidesModels, MolecularNanostructuresPeriplasmProtein BindingProtein DomainsConceptsPeriplasmic leafletStructural basisSingle-particle cryo-electron microscopyCryo-electron microscopyÅ resolution structureLipid flippasesGram-negative bacteriaLipopolysaccharide transportTransmembrane domainInner membraneCytoplasmic leafletMsbAOuter membraneCell envelopeResolution structureCassette transportersADP-vanadateStructural mechanismsConformational transitionLPS recognitionFunctional stateFlippasesMsbA.Hydrophobic interactionsMembraneMycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth
Glass LN, Swapna G, Chavadi SS, Tufariello JM, Mi K, Drumm JE, Lam TT, Zhu G, Zhan C, Vilchéze C, Arcos J, Chen Y, Bi L, Mehta S, Porcelli SA, Almo SC, Yeh SR, Jacobs WR, Torrelles JB, Chan J. Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth. PLOS Pathogens 2017, 13: e1006515. PMID: 28753640, PMCID: PMC5549992, DOI: 10.1371/journal.ppat.1006515.Peer-Reviewed Original ResearchConceptsPutative ATP-binding cassette transporterCassette transportersATP-binding cassette (ABC) transportersProtein-protein interactionsNon-phosphorylatable alanineVivo growth phenotypesHost-pathogen interactionsCell envelope componentsAffinity chromatography experimentsFHA domainPhosphorylated threonineMutant displaysTwo-hybridGrowth phenotypePutative ATPProtein modulesMutant proteinsPhosphorylated residuesMycobacterial growthBiological processesInositol mannosidesPIM expressionTransportersInteractsEnvelope components
2016
CFTR-associated ligand is a negative regulator of Mrp2 expression
Li M, Soroka CJ, Harry K, Boyer JL. CFTR-associated ligand is a negative regulator of Mrp2 expression. American Journal Of Physiology - Cell Physiology 2016, 312: c40-c46. PMID: 27834195, PMCID: PMC5283898, DOI: 10.1152/ajpcell.00100.2016.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCarrier ProteinsCells, CulturedChlorocebus aethiopsCOS CellsDown-RegulationGene Expression RegulationGolgi Matrix ProteinsHepatocytesHumansMaleMembrane ProteinsMembrane Transport ProteinsMiceMultidrug Resistance-Associated Protein 2Multidrug Resistance-Associated ProteinsRatsRats, Sprague-DawleySignal TransductionConceptsPull-down assaysGST pull-down assaysCOOH-terminal PDZNegative regulatorCotransfected COS-7 cellsGlutathione S-transferase fusion proteinS-transferase fusion proteinATP-binding cassette (ABC) transportersTrans-Golgi networkCystic fibrosis transmembrane conductance regulatorProtein-protein interactionsExchanger regulatory factor 1Fibrosis transmembrane conductance regulatorStreptavidin pull-down assaysTransmembrane conductance regulatorCOS-7 cellsRegulatory factor 1PDZ domainCell surface expressionPosttranscriptional regulationTransmembrane proteinPlasma membraneLLC-PK1 cellsCassette transportersCOS-7
2010
MiR-33 Contributes to the Regulation of Cholesterol Homeostasis
Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernández-Hernando C. MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science 2010, 328: 1570-1573. PMID: 20466885, PMCID: PMC3114628, DOI: 10.1126/science.1189862.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApolipoprotein A-IATP Binding Cassette Transporter 1ATP Binding Cassette Transporter, Subfamily G, Member 1ATP-Binding Cassette TransportersCarrier ProteinsCell LineCholesterolCholesterol, DietaryDietary FatsGene Expression RegulationHomeostasisHumansHypercholesterolemiaIntracellular Signaling Peptides and ProteinsIntronsLipoproteinsLipoproteins, HDLLiverMacrophagesMacrophages, PeritonealMembrane GlycoproteinsMiceMice, Inbred C57BLMicroRNAsNiemann-Pick C1 ProteinProteinsSterol Regulatory Element Binding Protein 2TransfectionConceptsSterol regulatory element-binding factor-2MiR-33Cellular cholesterol transportCholesterol effluxExpression of genesIntronic microRNAsTranscriptional regulatorsTriphosphate-binding cassette transportersAdenosine triphosphate-binding cassette transportersCellular cholesterol effluxCassette transportersHDL biogenesisHuman cellsCellular levelCholesterol homeostasisABCA1 expressionFactor 2Mouse macrophagesGenesLentiviral deliveryCholesterol transportExpressionABCA1Cholesterol metabolismEfflux
2008
Hemichannel-Mediated Inositol 1,4,5-Trisphosphate (IP3) Release in the Cochlea: A Novel Mechanism of IP3 Intercellular Signaling
Gossman D, Zhao H. Hemichannel-Mediated Inositol 1,4,5-Trisphosphate (IP3) Release in the Cochlea: A Novel Mechanism of IP3 Intercellular Signaling. Cell Communication & Adhesion 2008, 15: 305-315. PMID: 18979296, PMCID: PMC5543712, DOI: 10.1080/15419060802357217.Peer-Reviewed Original ResearchConceptsIntercellular signalingLong-distance intercellular communicationImportant second messengerGap junction channelsGap junction hemichannel blockerGap junction hemichannelsCochlear sensory epitheliumCassette transportersSecond messengerIntercellular communicationDeafness mutantsJunction channelsCell surfaceExtracellular mediatorsSignalingNovel mechanismSensory epitheliumHemichannelsExtracellular pathwaysTrisphosphateInositolFluorescence polarization techniqueHemichannel blockersImportant roleExtracellular application
2007
Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance
Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E, Zhang Y. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 16158-16163. PMID: 17911267, PMCID: PMC2042178, DOI: 10.1073/pnas.0702596104.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsCell CycleCell Line, TumorCell SurvivalFemaleHumansMiceMice, NudeModels, BiologicalNeoplasm TransplantationNeoplastic Stem CellsOligonucleotide Array Sequence AnalysisProtein KinasesPTEN PhosphohydrolaseSignal TransductionSTAT3 Transcription FactorTOR Serine-Threonine KinasesConceptsCancer stem-like cellsStem-like cellsNon-SP cellsSP cellsATP-binding cassette (ABC) transportersTarget of rapamycinActivator of transcriptionCDNA microarray analysisPathway-specific inhibitorsSTAT3 pathwayVivo tumorigenicity assaysProtein microarray technologyRare cell populationsCytometry cell cycle analysisSide population cellsColony formation abilityMTOR/STAT3 pathwayCell maintenanceSignal transductionBreast cancer stem-like cellsGene knockdownNegative regulatorCassette transportersMicroarray analysisCell cycle analysis
2006
ΔF508 Mutation Results in Impaired Gastric Acid Secretion*
Sidani SM, Kirchhoff P, Socrates T, Stelter L, Ferreira E, Caputo C, Roberts KE, Bell RL, Egan ME, Geibel JP. ΔF508 Mutation Results in Impaired Gastric Acid Secretion*. Journal Of Biological Chemistry 2006, 282: 6068-6074. PMID: 17178714, DOI: 10.1074/jbc.m608427200.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorATP-binding cassette (ABC) transportersFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorMouse gastric glandsParietal cellsMultifunctional proteinCFTR proteinRegulatory proteinsTransport proteinsCassette transportersConductance regulatorRegulatory roleApical poleSecretagogue-induced acid secretionGland lumenGastric glandsSulfonylurea receptorProteinImpaired gastric acid secretionK-ATPaseCl(-) secretionImmunofluorescent localizationCl- channelsATP-sensitive potassium channels
1998
[49] Assays of dynamics, mechanisms, and regulation of ATP transport and release: Implications for study of ABC transporter function
Schwiebert E, Egan M, Guggino W. [49] Assays of dynamics, mechanisms, and regulation of ATP transport and release: Implications for study of ABC transporter function. Methods In Enzymology 1998, 292: 664-675. PMID: 9711590, DOI: 10.1016/s0076-6879(98)92051-1.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAdenosine TriphosphateAnimalsATP-Binding Cassette TransportersCells, CulturedColforsinCystic Fibrosis Transmembrane Conductance RegulatorElectrophysiologyEpithelial CellsHumansIonomycinLuminescent MeasurementsMembrane PotentialsMiceModels, BiologicalOocytesOsmolar ConcentrationPatch-Clamp TechniquesSignal TransductionTritiumConceptsCystic fibrosis transmembrane conductance regulatorABC transportersATP-binding cassette (ABC) transportersSulfonylurea receptorFibrosis transmembrane conductance regulatorTransport of ATPABC transporter functionTransmembrane conductance regulatorImportance of ATPRegulatory machineryPancreatic β-cellsATP transportCassette transportersConductance regulatorTransporter functionTransporter moleculesBiological significanceATP sensorATPAgonist functionTransportersRelease of ATPΒ-cellsPowerful approachRegulator
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply