2025
Translaminar synchronous neuronal activity is required for columnar synaptic strengthening in the mouse neocortex
Vargas-Ortiz J, Lin L, Martinez V, Liu R, Babij R, Duan Z, Wacks S, Sun L, Wang A, Khan S, Soto-Vargas J, De Marco García N, Che A. Translaminar synchronous neuronal activity is required for columnar synaptic strengthening in the mouse neocortex. Nature Communications 2025, 16: 1296. PMID: 39900899, PMCID: PMC11791040, DOI: 10.1038/s41467-024-55783-w.Peer-Reviewed Original ResearchThis study shows how connections across layers in the cortex synchronize early brain activity, guiding sensory development and informing strategies to address neurodevelopmental disorders.
2024
Neuronal rhythmicity and cortical arousal in a mouse model of absence epilepsy
Khan W, Chopra S, Zheng X, Liu S, Paszkowski P, Valcarce-Aspegren M, Sieu L, Mcgill S, Mccafferty C, Blumenfeld H. Neuronal rhythmicity and cortical arousal in a mouse model of absence epilepsy. Experimental Neurology 2024, 381: 114925. PMID: 39151596, PMCID: PMC12020870, DOI: 10.1016/j.expneurol.2024.114925.Peer-Reviewed Original ResearchExtracellular single unit recordingsSingle unit recordingsMouse modelNeuronal firingAbsence epilepsyFiring patternsRat modelSeizure initiationMouse model of absence epilepsyIn vivo extracellular single unit recordingNeuronal activityUnit recordingsModel of absence epilepsySomatosensory barrel cortexC3H/HeJ mouse modelNeuronal firing rateHuman absence epilepsyDiverse firing patternsNeuronal rhythmicityArousal stateC3H/HeJ miceBarrel cortexStudy of neuronal activityCortical electroencephalographyFiring rate
2021
Rab27a-Dependent Paracrine Communication Controls Dendritic Spine Formation and Sensory Responses in the Barrel Cortex
Zhang L, Zhang X, Hsieh LS, Lin TV, Bordey A. Rab27a-Dependent Paracrine Communication Controls Dendritic Spine Formation and Sensory Responses in the Barrel Cortex. Cells 2021, 10: 622. PMID: 33799820, PMCID: PMC8000154, DOI: 10.3390/cells10030622.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedDendritic SpinesExcitatory Postsynaptic PotentialsExtracellular VesiclesFemaleGene Expression Regulation, DevelopmentalGestational AgeMiceParacrine CommunicationPregnancyPyramidal Cellsrab27 GTP-Binding ProteinsSensory Receptor CellsSomatosensory CortexSynaptic TransmissionVibrissaeConceptsSmall extracellular vesiclesL4 neuronsParacrine communicationExcitatory synaptic transmissionRelease of sEVsDendritic spine formationCell-autonomous effectsRisk of autismL2/3 neuronsPyramidal neuronsLayer 2/3Somatosensory cortexBarrel cortexCortical neuronsSynaptic transmissionWhisker stimulationSomatosensory informationJuvenile miceSynaptic connectivitySynaptic integrationSpine formationBrain developmentNeuronsSensory stimulationSpine development
2020
White matter structure and myelin-related gene expression alterations with experience in adult rats
Sampaio-Baptista C, Vallès A, Khrapitchev A, Akkermans G, Winkler A, Foxley S, Sibson N, Roberts M, Miller K, Diamond M, Martens G, De Weerd P, Johansen-Berg H. White matter structure and myelin-related gene expression alterations with experience in adult rats. Progress In Neurobiology 2020, 187: 101770. PMID: 32001310, PMCID: PMC7086231, DOI: 10.1016/j.pneurobio.2020.101770.Peer-Reviewed Original ResearchConceptsDiffusion tensor imagingAdult ratsMRNA expressionMyelin basic protein mRNA expressionWM plasticityNeuronal activity modulationMBP protein expressionC-fos mRNA expressionMatter structuresAnalysis of myelinGray matter structuresProtein mRNA expressionWhite matter plasticityRegulation of myelinationWhite matter structuresBarrel cortexGene expression alterationsCortical activityMRNA expression analysisRNA sequencing analysisBrain structuresTensor imagingDTI differencesMacroscale measuresMolecular correlates
2019
Assemblies of Perisomatic GABAergic Neurons in the Developing Barrel Cortex
Modol L, Bollmann Y, Tressard T, Baude A, Che A, Duan Z, Babij R, De Marco García N, Cossart R. Assemblies of Perisomatic GABAergic Neurons in the Developing Barrel Cortex. Neuron 2019, 105: 93-105.e4. PMID: 31780328, PMCID: PMC7537946, DOI: 10.1016/j.neuron.2019.10.007.Peer-Reviewed Original ResearchConceptsGABAergic neuronsBarrel cortexMouse barrel cortexParvalbumin-expressing cellsEarly postnatal periodGABAergic networkNeonatal periodGABAergic activityGABAergic cellsCalcium imagingPostnatal periodThalamic inputMigration arrestProgrammed Cell DeathCell deathNeuronsMiceCortexCortical networksCells
2018
Layer I Interneurons Sharpen Sensory Maps during Neonatal Development
Che A, Babij R, Iannone A, Fetcho R, Ferrer M, Liston C, Fishell G, De Marco García N. Layer I Interneurons Sharpen Sensory Maps during Neonatal Development. Neuron 2018, 99: 98-116.e7. PMID: 29937280, PMCID: PMC6152945, DOI: 10.1016/j.neuron.2018.06.002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCalciumCell Adhesion Molecules, NeuronalCerebral CortexExtracellular Matrix ProteinsGene Knockdown TechniquesInterneuronsMiceNerve Tissue ProteinsNeural PathwaysOptogeneticsPatch-Clamp TechniquesPhysical StimulationPyramidal CellsReceptors, N-Methyl-D-AspartateReceptors, Serotonin, 5-HT3Reelin ProteinSensory DeprivationSerine EndopeptidasesSomatosensory CortexTouchVibrissaeConceptsNMDA receptorsWhisker-dependent behaviorsSpontaneous calcium transientsDiverse neuronal typesPostnatal day 6Barrel map formationLayer IIntrinsic neuronal activityCalcium transientsSerotonin receptorsBarrel cortexWhisker stimulationInterneuron typesLongitudinal calcium imagingMouse pupsNeonatal developmentSensory mapsWhisker responsesCalcium imagingNeonatal mammalsNeuronal activityInterneuronsNeuron typesThalamic inputDay 6
2012
Diversity of GABAergic Interneurons in Layer VIa and VIb of Mouse Barrel Cortex
Perrenoud Q, Rossier J, Geoffroy H, Vitalis T, Gallopin T. Diversity of GABAergic Interneurons in Layer VIa and VIb of Mouse Barrel Cortex. Cerebral Cortex 2012, 23: 423-441. PMID: 22357664, DOI: 10.1093/cercor/bhs032.Peer-Reviewed Original ResearchConceptsVasoactive intestinal peptideNeuropeptide YGABAergic interneuronsLayer VIBarrel cortexWhole-cell current-clamp recordingsMouse somatosensory barrel cortexSingle-cell reverse transcription-polymerase chain reactionAminobutyric acidergic interneuronsNeocortical layer VIMouse barrel cortexSomatosensory barrel cortexCurrent-clamp recordingsReverse transcription-polymerase chain reactionTypes of interneuronsTranscription-polymerase chain reactionGABAergic cellsIntestinal peptideAcute slicesBiocytin labelingTransgenic miceInterneuronsThalamocortical transferSomatostatinParvalbuminCharacterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse
Perrenoud Q, Geoffroy H, Gauthier B, Rancillac A, Alfonsi F, Kessaris N, Rossier J, Vitalis T, Gallopin T. Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse. Frontiers In Neural Circuits 2012, 6: 36. PMID: 22754499, PMCID: PMC3386492, DOI: 10.3389/fncir.2012.00036.Peer-Reviewed Original ResearchType II neuronsVasoactive intestinal peptideType I neuronsMedial ganglionic eminenceNeuronal nitric oxide synthaseDeep layer neuronsI neuronsCaudal ganglionic eminenceBarrel cortexGanglionic eminenceLayers II/IIIExpression of parvalbuminNitric oxide synthaseWhole-cell recordingsType IType II cellsNNOS immunohistochemistryDorsal preoptic areaGABAergic neuronsIntestinal peptideOxide synthasePreoptic areaBiocytin labelingSomatostatinEx vivo
2008
Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development
Iwasato T, Inan M, Kanki H, Erzurumlu RS, Itohara S, Crair MC. Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development. Journal Of Neuroscience 2008, 28: 5931-5943. PMID: 18524897, PMCID: PMC2733830, DOI: 10.1523/jneurosci.0815-08.2008.Peer-Reviewed Original ResearchConceptsTC synapsesLayer IV barrel neuronsCritical period plasticityPrimary somatosensory cortexFormation of barrelsAdenylyl cyclase 1Knock-out (KO) miceType 1 adenylyl cyclaseDendritic asymmetryBarrel neuronsThalamocortical synapsesActivity-dependent mannerTrigeminal pathwayFormation of cAMPSomatosensory cortexBarrel cortexBarrel developmentSynapse maturationPresynaptic maturationBarrel hollowsTC axonsSubcortical regionsFunctional maturationMutant miceBRL mice
2007
Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice
Albright MJ, Weston MC, Inan M, Rosenmund C, Crair MC. Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice. Journal Of Neurophysiology 2007, 98: 1610-1625. PMID: 17581849, DOI: 10.1152/jn.00219.2007.Peer-Reviewed Original ResearchConceptsExcitatory postsynaptic potentialsField excitatory postsynaptic potentialsGAP-43Thalamocortical synapsesSynaptic responsesCompetitive glutamate receptor antagonistN-methyl-D-aspartate receptorsAcute brain slice preparationBarrel map formationThalamocortical synaptic responsesWild-type littermate controlsGlutamate receptor antagonistsBrain slice preparationGrowth-associated proteinThalamic innervationThalamic neuronsBarrel mapReceptor antagonistIsoxazolepropionate (AMPA) receptorsPostsynaptic potentialsLayer IVSlice preparationBarrel cortexSynaptic transmissionAMPAR functionDevelopment of Cortical Maps: Perspectives From the Barrel Cortex
Inan M, Crair MC. Development of Cortical Maps: Perspectives From the Barrel Cortex. The Neuroscientist 2007, 13: 49-61. PMID: 17229975, DOI: 10.1177/1073858406296257.Peer-Reviewed Original ResearchConceptsBarrel mapThalamic axonsBarrel cortexBarrel map formationActivity-dependent cuesMolecular cuesSensory afferentsMotor cortexPrimary somatosensoryThalamocortical axonsSomatosensory cortexCortical neuronsSynapse maturationNeuronal activityFunctional maturationVentricular cellsCortical mapsCortexAxonsNeocortical developmentWiring principlesCortical patterningMammalian neocortexNeocortexNeurons
2006
Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development
Komai S, Licznerski P, Cetin A, Waters J, Denk W, Brecht M, Osten P. Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nature Neuroscience 2006, 9: 1125-1133. PMID: 16921372, DOI: 10.1038/nn1752.Peer-Reviewed Original ResearchConceptsSomatodendritic excitabilityExperience-dependent developmentLayer 2/3 pyramidal neuronsCortical networksSensory responsesRat somatosensory cortexNormal cortical developmentCortical sensory responsesDevelopmental strengtheningPostsynaptic excitabilityPyramidal neuronsSomatosensory cortexCortical neuronsBarrel cortexPostsynaptic neuronsCortical developmentSensory cortexSensory pathwaysSensory responsivenessSynaptic strengthExcitabilitySensory deprivationCortexNeuronsVivo recordingsBarrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling
Inan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling. Journal Of Neuroscience 2006, 26: 4338-4349. PMID: 16624954, PMCID: PMC6674004, DOI: 10.1523/jneurosci.3745-05.2006.Peer-Reviewed Original ResearchConceptsBarrel map formationLayer IV neuronsActivity-dependent developmentAMPA receptor functionCAMP/PKA-dependent pathwayLong-term potentiationThalamocortical synapsesThalamocortical afferentsTC synapsesThalamocortical synapseBarrel cortexPKA targetsBarrel patternCortical developmentPKA-dependent pathwayBrain circuitryPostsynaptic processesSynapse formationReceptor functionCAMP-dependent protein kinaseHebbian mechanismsDevelopmental increaseMiceSynapsesActivity-dependent models
2001
Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition
Lu H, Gonzalez E, Crair M. Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition. Neuron 2001, 32: 619-634. PMID: 11719203, DOI: 10.1016/s0896-6273(01)00501-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain MappingCritical Period, PsychologicalExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalLong-Term PotentiationMiceMice, Inbred C57BLMice, KnockoutNeuronal PlasticityPiperidinesQuinoxalinesReceptors, AMPAReceptors, N-Methyl-D-AspartateSomatosensory CortexSynapsesThalamusConceptsNMDA receptor subunit compositionReceptor subunit compositionSubunit compositionMouse somatosensory barrel cortexCritical periodNR2A knockout miceCritical period plasticitySomatosensory barrel cortexNMDAR subunit compositionCurrent kineticsAfferent innervationBarrel cortexNR2B subunitKnockout miceSynaptic plasticityNR2A subunitPlasticity windowSubunitsBarrel Pattern Formation Requires Serotonin Uptake by Thalamocortical Afferents, and Not Vesicular Monoamine Release
Persico A, Mengual E, Moessner R, Hall S, Revay R, Sora I, Arellano J, DeFelipe J, Giménez-Amaya J, Conciatori M, Marino R, Baldi A, Cabib S, Pascucci T, Uhl G, Murphy D, Lesch K, Keller F. Barrel Pattern Formation Requires Serotonin Uptake by Thalamocortical Afferents, and Not Vesicular Monoamine Release. Journal Of Neuroscience 2001, 21: 6862-6873. PMID: 11517274, PMCID: PMC6763105, DOI: 10.1523/jneurosci.21-17-06862.2001.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsBiogenic MonoaminesCarrier ProteinsExtracellular SpaceFenclonineGABA Plasma Membrane Transport ProteinsImmunohistochemistryMembrane GlycoproteinsMembrane ProteinsMembrane Transport ProteinsMiceMice, Inbred C57BLMice, KnockoutNerve Tissue ProteinsNeurons, AfferentNeuropeptidesOrganic Anion TransportersSerotoninSerotonin AntagonistsSerotonin Plasma Membrane Transport ProteinsSomatosensory CortexSynapsesSynaptic VesiclesThalamusVesicular Biogenic Amine Transport ProteinsVesicular Monoamine Transport ProteinsVibrissaeConceptsVMAT2-KO miceDensity of synapsesKnock-out (KO) miceVesicular monoamine transporterThalamocortical afferentsCerebral cortexSynaptic contactsThalamocortical neuronsKO miceLayer IVBarrel cortexMonoamine releaseNeonatal rodentsBarrel fieldPostnatal growthVesicular releaseSerotonin transporterMonoamine transportersCortexPlasma membrane serotonin transporterSynaptic vesiclesQuantitative electron microscopyMiceComplete absenceRelease
1999
Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording
Higashi S, Crair MC, Kurotani T, Inokawa H, Toyama K. Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording. Neuroscience 1999, 91: 439-452. PMID: 10366001, DOI: 10.1016/s0306-4522(98)00666-6.Peer-Reviewed Original ResearchConceptsInfraorbital nerve cutNerve cutNormal ratsLayer IVSomatosensory cortexDextran amine labelingThalamocortical slice preparationPostnatal day 7Cytochrome oxidase stainingThalamocortical transmissionThalamocortical connectionsDextran amineThalamocortical axonsThalamic stimulationBarrel cortexFunctional synapsesSlice preparationAxon terminalsVoltage-sensitive dyeTerminal arborsAltered spatial patternDay 7P5-P6RatsBarrel formation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply