Emanuela Bruscia, PhD
Associate Professor of Pediatrics (Respiratory)Cards
Appointments
Contact Info
Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine
PO Box 208064
New Haven, CT 06520-8064
United States
About
Titles
Associate Professor of Pediatrics (Respiratory)
Biography
Dr. Bruscia received her Ph.D. in Biochemistry and Molecular Genetics from the University of Tor Vergata in Rome (Italy) in 2002. Since she was an undergraduate, her research has been dedicated to Cystic Fibrosis. During her undergraduate studies, she began working in the exciting field of gene therapy. She spent two years in the laboratory of Dr. Dieter Gruenert at the University of Vermont (Burlington, VT), where she worked on non-viral gene therapy strategies. She started her postdoctoral training in the laboratory of Dr. Diane Krause at Yale School of Medicine in 2002. Here, she explored the use of bone marrow-derived cells as a vehicle for gene therapy in the airway and intestinal epithelia in murine models for CF. In 2005, Dr. Bruscia was appointed as an Associate Research Scientist in the Department of Pediatrics at Yale School of Medicine and in 2010 promoted as an Assistant Professor in the same department. In 2016, she was promoted to Associate Professor. In the past ten years, her research interest has focused on the role of CFTR in the immune system, particularly in macrophages. The current focus of her lab is to explore emerging therapeutic strategies able to target several aspects of CF lung disease, while still proceeding with studies focused on understanding how the lack of CFTR is impairing macrophage function.
Appointments
Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine
Associate Professor on TermPrimary
Other Departments & Organizations
- Bruscia Lab
- Center for Infection and Immunity
- CPIRT - Center for Pulmonary Injury, Inflammation, Repair and Therapeutics
- Molecular Medicine, Pharmacology, and Physiology
- Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine
- Pediatrics
- Program in Translational Biomedicine (PTB)
- Yale Combined Program in the Biological and Biomedical Sciences (BBS)
- Yale Stem Cell Center
- Yale Ventures
- YCCEH
Education & Training
- PhD
- Tor Vergata University in Rome (2002)
Research
Overview
Medical Subject Headings (MeSH)
- View Lab Website
Bruscia Lab
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Diane Krause, MD, PhD
Marie Egan, MD
Thomas Murray, MD, PhD
Stephanie Halene, MD, Dr Med
Ping-Xia Zhang, MD, PhD
Clemente Britto-Leon, MD
Cystic Fibrosis
Cystic Fibrosis Transmembrane Conductance Regulator
Lung
Macrophages
Publications
2024
Understanding Impact of CFTR Dysfunction on Airway Immune Cell Composition in Early Lung Disease Pathogenesis
Kockar Kizilirmak T, Yin H, Garrison A, Bruscia E, Egan M, Britto-Leon C. Understanding Impact of CFTR Dysfunction on Airway Immune Cell Composition in Early Lung Disease Pathogenesis. 2024, a6357-a6357. DOI: 10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a6357.Peer-Reviewed Original ResearchPrior Influenza Infection Mitigates SARS-CoV-2 Disease in Syrian Hamsters
Di Pietro C, Haberman A, Lindenbach B, Smith P, Bruscia E, Allore H, Vander Wyk B, Tyagi A, Zeiss C. Prior Influenza Infection Mitigates SARS-CoV-2 Disease in Syrian Hamsters. Viruses 2024, 16: 246. PMID: 38400021, PMCID: PMC10891789, DOI: 10.3390/v16020246.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsTransient gene expressionSARS-CoV-2Viral replication pathwayReplication pathwayAntiviral pathwaysEndemism patternsUpregulation of innateGene expressionQuantitative RT-PCRMitigated weight lossDual-infected animalsSARS-CoV-2 viral loadSARS-CoV-2 infectionSyrian hamstersSeasonal infection ratesSARS-CoV-2 inoculationLungs of animalsIndividual virusesSARS-CoV-2 diseaseUpper respiratory tractH1N1 infectionRT-PCRBronchoalveolar lavageViral loadCytokine levelsDe-labeling of Food Allergy in Electronic Medical Records for Cystic Fibrosis Patients to Avoid Unnecessary Food Restriction
Nguyen H, Bruscia E, Young J, Egan M, Leeds S. De-labeling of Food Allergy in Electronic Medical Records for Cystic Fibrosis Patients to Avoid Unnecessary Food Restriction. Journal Of Allergy And Clinical Immunology 2024, 153: ab114. DOI: 10.1016/j.jaci.2023.11.376.Peer-Reviewed Original Research
2023
194 Investigating the role of bromodomain-containing 8 isoforms in the innate immune response of human airway epithelial cells
Browne J, Bruscia E, Garrison A, Harris A, Egan M. 194 Investigating the role of bromodomain-containing 8 isoforms in the innate immune response of human airway epithelial cells. Journal Of Cystic Fibrosis 2023, 22: s101. DOI: 10.1016/s1569-1993(23)01124-4.Peer-Reviewed Original ResearchThe effects of elexafactor/tezafactor/ivacaftor beyond the epithelium: spurring macrophages to fight infections.
Bruscia E. The effects of elexafactor/tezafactor/ivacaftor beyond the epithelium: spurring macrophages to fight infections. European Respiratory Journal 2023, 61: 2300216. PMID: 37003613, DOI: 10.1183/13993003.00216-2023.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and Concepts
2022
Update on Innate and Adaptive Immunity in Cystic Fibrosis
Bruscia E, Bonfield T. Update on Innate and Adaptive Immunity in Cystic Fibrosis. Clinics In Chest Medicine 2022, 43: 603-615. PMID: 36344069, DOI: 10.1016/j.ccm.2022.06.004.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsChronic infectionCFTR modulator therapyRobust inflammatory responseCystic fibrosis pathophysiologyImmune dysregulationPatient ageExcessive inflammationModulator therapyLung microenvironmentLung infectionImmune mechanismsInflammatory responseAdaptive immunityMucociliary transportCF life expectancyCF lungCystic fibrosisInfectionLife expectancyImmunityCritical roleCurrent understandingMorbidityInflammationFibrosisRecruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis
Öz H, Cheng E, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang P, Huang P, Esquibies S, Britto C, Schupp J, Murray T, Halene S, Krause D, Egan M, Bruscia E. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Reports 2022, 41: 111797. PMID: 36516754, PMCID: PMC9833830, DOI: 10.1016/j.celrep.2022.111797.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsC motif chemokine receptor 2Monocytes/macrophagesLung tissue damageCystic fibrosisTissue damageCF lungPulmonary neutrophilic inflammationPro-inflammatory environmentChemokine receptor 2CF lung diseaseNumber of monocytesSpecific therapeutic agentsGrowth factor βCF transmembrane conductance regulatorLung hyperinflammationLung neutrophiliaNeutrophilic inflammationNeutrophil inflammationInflammation contributesLung damageNeutrophil recruitmentLung diseaseLung tissueReceptor 2Therapeutic targetHuman neutrophil development and functionality are enabled in a humanized mouse model
Zheng Y, Sefik E, Astle J, Karatepe K, Öz HH, Solis AG, Jackson R, Luo HR, Bruscia EM, Halene S, Shan L, Flavell RA. Human neutrophil development and functionality are enabled in a humanized mouse model. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2121077119. PMID: 36269862, PMCID: PMC9618085, DOI: 10.1073/pnas.2121077119.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsHumanized mouse modelMouse modelHuman immune systemHuman neutrophilsImmune systemFunctional human immune systemGranulocyte colony-stimulating factorUnique mouse modelColony-stimulating factorHuman G-CSFMISTRG miceG-CSF receptor geneBacterial burdenInfectious challengeG-CSFNeutrophilsMiceNeutrophil developmentReceptor geneDiseaseEmerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. International Journal Of Molecular Sciences 2022, 23: 7750. PMID: 35887098, PMCID: PMC9319215, DOI: 10.3390/ijms23147750.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsPhagosome formationCystic fibrosis transmembrane conductance regulator (CFTR) geneTransmembrane conductance regulator geneInnate immunityTissue homeostasisRegulator geneMutant CFTRCF macrophagesCystic fibrosisPhagocytic mechanismsPathogenic microbesAdaptive immune systemDefective macrophage phagocytosisCFTRCurrent understandingTherapeutic developmentCentral roleMacrophage phagocytosisCFTR modulatorsPhagocytic cellsPhagocytosisNew therapeutic developmentsMacrophages contributesLung functionChronic inflammationGene therapy applications to transfusion medicine
Tabibi S, Gehrie E, Bruscia E, Krause D. Gene therapy applications to transfusion medicine. 2022, 642-647. DOI: 10.1002/9781119719809.ch56.ChaptersConceptsGene therapyVector-based gene therapyViral vector-based gene therapyGene therapy applicationsTranscription activator-like effector nucleasesZinc finger nucleasesGene-editing approachesNonviral vectorsGene-editing techniquesGene integrationTherapy applicationsFinger nucleasesEffector nucleasesViral vectorsReplication-competent virusPossible applicationsGenetic materialApplicationsNucleaseTarget cellsVectorCRISPR
News & Links
Media
- We investigate the mechanism/s by which the dysregulated activity of immune cells contributes to the overwhelming lung inflammation, the weakened host defense against certain microorganisms, and the altered lung tissue repair processes that characterize CF lung disease.
News
Get In Touch
Contacts
Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine
PO Box 208064
New Haven, CT 06520-8064
United States
Events
Restricted Emanuela Bruscia, PhDVirtual Option: Or Telephone:203-432-9666 (2-ZOOM if on-campus) or 646 568 7788 One Tap Mobile: +12034329666,,93435962297# US (Bridgeport) Password: 758103 Meeting ID: 934 3596 2297