2024
Aedes aegypti adiponectin receptor-like protein signaling facilitates Zika virus infection
Chen T, Marín-López A, Raduwan H, Fikrig E. Aedes aegypti adiponectin receptor-like protein signaling facilitates Zika virus infection. MBio 2024, 15: e02433-24. PMID: 39373507, PMCID: PMC11559040, DOI: 10.1128/mbio.02433-24.Peer-Reviewed Original ResearchReceptor-like proteinZika virus infectionVirus infectionDevelopment of effective control strategiesSignificant public health challengeTranscriptome analysisTrypsin genesMetabolic pathwaysProtein signalingPublic health challengeViral infectionTransmission of viral diseasesAedes aegypti</i>InfectionBlood digestionZika virusProteinSignificance of signalsComplex interactionsVirusEffective control strategiesViral diseasesZikaMosquitoesPathwayZika virus exists in enterocytes and enteroendocrine cells of the Aedes aegypti midgut
Chen T, Raduwan H, Marín-López A, Cui Y, Fikrig E. Zika virus exists in enterocytes and enteroendocrine cells of the Aedes aegypti midgut. IScience 2024, 27: 110353. PMID: 39055935, PMCID: PMC11269924, DOI: 10.1016/j.isci.2024.110353.Peer-Reviewed Original ResearchAedes aegypti midgutEnteroendocrine cellsSingle-cell RNA sequencingIntestinal stem cellsVirus infectionPathogen interactionsExpressed genesRNA sequencingCopy numberTranscriptomic changesFunctional studiesInfected cellsZika virus infectionEnteroendocrineBlood digestionRNA copy numberCellular levelCell processesGenesMidgutPotential targetCell clustersCellsEnterocytesViral infection
2019
Loss of the TAM Receptor Axl Ameliorates Severe Zika Virus Pathogenesis and Reduces Apoptosis in Microglia
Hastings AK, Hastings K, Uraki R, Hwang J, Gaitsch H, Dhaliwal K, Williamson E, Fikrig E. Loss of the TAM Receptor Axl Ameliorates Severe Zika Virus Pathogenesis and Reduces Apoptosis in Microglia. IScience 2019, 13: 339-350. PMID: 30884311, PMCID: PMC6424058, DOI: 10.1016/j.isci.2019.03.003.Peer-Reviewed Original ResearchZIKV infectionZIKV pathogenesisVirus infectionAxl-deficient miceZika virus pathogenesisRole of AxlZika virus infectionAlpha/beta receptorTAM receptor AxlInterferon alpha/beta receptorTAM receptorsVirus pathogenesisMouse modelEntry receptorBeta receptorsReceptor AxlViral infectionAXL inhibitorAxl receptorInfectionPathogenesisAxlMiceLess apoptosisReceptors
2017
Zika Virus and Sexual Transmission: A New Route of Transmission for Mosquito-borne Flaviviruses.
Hastings AK, Fikrig E. Zika Virus and Sexual Transmission: A New Route of Transmission for Mosquito-borne Flaviviruses. The Yale Journal Of Biology And Medicine 2017, 90: 325-330. PMID: 28656018, PMCID: PMC5482308.Peer-Reviewed Original ResearchConceptsSexual transmissionZika virusWorld Health OrganizationWest Nile virusAcute onset paralysisUnprotected sexual contactRoutes of transmissionNew global epidemicSevere birth defectsBody achesMild feverAnimal modelsInfected mosquitoesVaginal secretionsViral infectionMain mosquito vectorGlobal epidemicFlaviviridae familyImportant human pathogenSexual contactDisease controlHealth OrganizationZika transmissionNile virusBirth defects
2016
Genetics of War and Truce between Mosquitos and Emerging Viruses
Hwang J, Jurado KA, Fikrig E. Genetics of War and Truce between Mosquitos and Emerging Viruses. Cell Host & Microbe 2016, 19: 583-587. PMID: 27173926, PMCID: PMC7063512, DOI: 10.1016/j.chom.2016.04.009.Peer-Reviewed Original Research
2013
Identification of Genes Critical for Resistance to Infection by West Nile Virus Using RNA-Seq Analysis
Qian F, Chung L, Zheng W, Bruno V, Alexander RP, Wang Z, Wang X, Kurscheid S, Zhao H, Fikrig E, Gerstein M, Snyder M, Montgomery RR. Identification of Genes Critical for Resistance to Infection by West Nile Virus Using RNA-Seq Analysis. Viruses 2013, 5: 1664-1681. PMID: 23881275, PMCID: PMC3738954, DOI: 10.3390/v5071664.Peer-Reviewed Original ResearchConceptsCommon gene pathwaysNovel cellular responsesDifferential gene expressionRNA-seq analysisWest Nile virusGene expression analysisPrimary human macrophagesGene isoformsHigh-throughput methodRNA-seqGene pathwaysExpression analysisGenes CriticalKnock-downGene expressionCellular responsesGene changesResistant individualsBiological settingsHuman macrophagesGenesCritical roleAvailable treatmentsHealthy donorsViral infectionUBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS
Wang P, Yang L, Cheng G, Yang G, Xu Z, You F, Sun Q, Lin R, Fikrig E, Sutton RE. UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS. Cell Reports 2013, 3: 1057-1070. PMID: 23545497, PMCID: PMC3707122, DOI: 10.1016/j.celrep.2013.02.027.Peer-Reviewed Original ResearchConceptsAntiviral immune responseInnate immune responseImmune responseLike receptorsSystemic antiviral immune responsesVirus-induced innate immune responsesDengue virus infectionType I interferon responseI interferon responseRNA virusesVirus infectionViral infectionStrong inhibitory effectViral replicationVirus replicationInterferon responseRNA virus replicationInhibitory effectWest NileMAVSVesicular stomatitisInfectionAdaptor moleculeFamily membersReceptors
2012
IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis
Wang P, Bai F, Zenewicz LA, Dai J, Gate D, Cheng G, Yang L, Qian F, Yuan X, Montgomery RR, Flavell RA, Town T, Fikrig E. IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis. PLOS ONE 2012, 7: e44153. PMID: 22952908, PMCID: PMC3429482, DOI: 10.1371/journal.pone.0044153.Peer-Reviewed Original ResearchConceptsWild-type miceCentral nervous systemIL-22Viral loadNeutrophil migrationType miceWest Nile virus encephalitisSimilar viral loadsLethal WNV infectionIL-22 signalingHost immune responseWNV neuroinvasionVirus encephalitisCXCR2 ligandsLeukocyte infiltrateProinflammatory cytokinesChemokine receptorsImmune responseWNV infectionViral infectionNervous systemSignaling contributesExtracellular pathogensNon-redundant roleWT leukocytes
2011
Innate immune control of West Nile virus infection
Arjona A, Wang P, Montgomery RR, Fikrig E. Innate immune control of West Nile virus infection. Cellular Microbiology 2011, 13: 1648-1658. PMID: 21790942, PMCID: PMC3196381, DOI: 10.1111/j.1462-5822.2011.01649.x.Peer-Reviewed Original ResearchConceptsWest Nile virusWNV infectionAntiviral innate immune mechanismsLong-term neurologic sequelaeWest Nile virus infectionRe-emerging zoonotic pathogenInnate immune controlInnate immune mechanismsLife-threatening meningoencephalitisInnate immune systemNeurologic sequelaeImmune controlInflammatory mediatorsImmune mechanismsMammalian hostsVirus infectionCurrent evidenceViral infectionAntiviral effectorsImmune systemFlaviviridae familyAntiviral mechanismInfectionNile virusJAK-STATImpaired Interferon Signaling in Dendritic Cells From Older Donors Infected In Vitro With West Nile Virus
Qian F, Wang X, Zhang L, Lin A, Zhao H, Fikrig E, Montgomery RR. Impaired Interferon Signaling in Dendritic Cells From Older Donors Infected In Vitro With West Nile Virus. The Journal Of Infectious Diseases 2011, 203: 1415-1424. PMID: 21398396, PMCID: PMC3080893, DOI: 10.1093/infdis/jir048.Peer-Reviewed Original ResearchConceptsDendritic cellsWest Nile virusOlder donorsAntiviral responseToll-like receptor 3Initial antiviral responseLate-phase responseNile virusSignificant age-related differencesSignificant human morbidityType I IFNQuantified cytokinesRNA flavivirusAge-related differencesYoung donorsI IFNReceptor RIGViral infectionReceptor 3Human morbidityOlder populationCritical regulatory pathwaysInterferon SignalingNuclear translocationDefective regulation
2009
The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus
Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ. The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus. Cell 2009, 139: 1243-1254. PMID: 20064371, PMCID: PMC2824905, DOI: 10.1016/j.cell.2009.12.017.Peer-Reviewed Original ResearchConceptsAntiviral restriction factorsWest Nile virusDengue virusInfluenza A H1N1 virusesNile virusRestriction factorsInterferon type ICellular innate immunityH1N1 virusRespiratory illnessMajor human pathogenViral infectionInnate immunityViral replicationIFITM proteinsInfluenza virusInfluenzaHost cell machineryVirusIFITMsInfectionEndosomal acidificationCellular resistanceType IHuman pathogensIL-10 Signaling Blockade Controls Murine West Nile Virus Infection
Bai F, Town T, Qian F, Wang P, Kamanaka M, Connolly TM, Gate D, Montgomery RR, Flavell RA, Fikrig E. IL-10 Signaling Blockade Controls Murine West Nile Virus Infection. PLOS Pathogens 2009, 5: e1000610. PMID: 19816558, PMCID: PMC2749443, DOI: 10.1371/journal.ppat.1000610.Peer-Reviewed Original ResearchConceptsIL-10 signalingIL-10WNV infectionWest Nile virusIL-10-deficient miceWest Nile virus infectionImportant cellular sourceSignificant human morbidityRNA flavivirusWNV pathogenesisInterleukin-10Antiviral cytokinesEtiologic rolePharmacologic blockadeDeficient miceT cellsVirus infectionPharmacologic meansTherapeutic strategiesViral infectionCellular sourceInfectionHuman morbidityNile virusMice
2008
ICAM-1 Participates in the Entry of West Nile Virus into the Central Nervous System
Dai J, Wang P, Bai F, Town T, Fikrig E. ICAM-1 Participates in the Entry of West Nile Virus into the Central Nervous System. Journal Of Virology 2008, 82: 4164-4168. PMID: 18256150, PMCID: PMC2292986, DOI: 10.1128/jvi.02621-07.Peer-Reviewed Original ResearchConceptsWest Nile virusICAM-1Control animalsWest Nile virus neuroinvasionBlood-brain barrier leakagePathogenesis of encephalitisNile virusBlood-brain barrierLow viral loadWest Nile encephalitisCentral nervous systemICAM-1 participatesVirus neuroinvasionNeuronal damageLeukocyte infiltrationViral encephalitisViral loadBarrier leakageViral infectionNervous systemEncephalitisMiceICAMVirusAnimals
2005
Use of RNA Interference to Prevent Lethal Murine West Nile Virus Infection
Bai F, Wang T, Pal U, Bao F, Gould LH, Fikrig E. Use of RNA Interference to Prevent Lethal Murine West Nile Virus Infection. The Journal Of Infectious Diseases 2005, 191: 1148-1154. PMID: 15747251, DOI: 10.1086/428507.Peer-Reviewed Original ResearchConceptsWest Nile virusNile virusWest Nile virus infectionWest Nile virus replicationInjection 24 hAdministration of siRNAsIntraperitoneal inoculumViral loadProphylactic useFatal encephalitisLethal infectionVirus infectionViral infectionVirus replicationPartial protectionInfectionVirusMicePresent studyRNA interferenceEncephalitisSiRNAsAdministration