2015
Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis
Sui Z, Nowak RB, Sanada C, Halene S, Krause DS, Fowler VM. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis. Blood 2015, 126: 520-530. PMID: 25964668, PMCID: PMC4513252, DOI: 10.1182/blood-2014-09-601484.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAnimalsApoptosisBlood PlateletsBlotting, WesternCell MembraneCell ProliferationCells, CulturedCytoplasmEmbryo, MammalianFemaleFluorescent Antibody TechniqueHematopoiesisHemorrhageImmunoprecipitationMegakaryocytesMiceMice, KnockoutMicroscopy, ConfocalMicroscopy, Electron, TransmissionMicroscopy, FluorescencePloidiesPolymerizationTropomodulinConceptsPlatelet biogenesisDemarcation membrane systemF-actinTropomodulin-3Organelle distributionProplatelet formationActin polymerizationF-actin cappingF-actin organizationF-actin cytoskeletonWild-type megakaryocytesActin cytoskeletonActin organizationMK differentiationTmod isoformsLarge proplateletsBiogenesisContractile bundlesActin filamentsDMS formationBinds tropomyosinBud sizeMK numberConfocal microscopyCytoskeleton
2012
MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation
Smith EC, Thon JN, Devine MT, Lin S, Schulz VP, Guo Y, Massaro SA, Halene S, Gallagher P, Italiano JE, Krause DS. MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation. Blood 2012, 120: 2317-2329. PMID: 22806889, PMCID: PMC3447785, DOI: 10.1182/blood-2012-04-420828.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateAnimalsBleeding TimeBlood PlateletsBone Marrow CellsCells, CulturedCrosses, GeneticCytoplasmCytoskeletonGene Expression ProfilingHematopoiesisMegakaryocytesMiceMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisPlatelet ActivationThrombocytopeniaTrans-ActivatorsTranscription FactorsConceptsMegakaryocyte maturationPlatelet formationSerum response factorSerum response factor expressionMembrane organizationGene expressionMKL1MKL2Response factorDKO miceKO backgroundMegakaryocyte compartmentMegakaryocytesCritical roleMegakaryocyte ploidyExpressionMaturationKnockout miceFactor expressionCrucial roleHomologuesGenesMiceProlonged bleeding timeRoleProxTom Lymphatic Vessel Reporter Mice Reveal Prox1 Expression in the Adrenal Medulla, Megakaryocytes, and Platelets
Truman LA, Bentley KL, Smith EC, Massaro SA, Gonzalez DG, Haberman AM, Hill M, Jones D, Min W, Krause DS, Ruddle NH. ProxTom Lymphatic Vessel Reporter Mice Reveal Prox1 Expression in the Adrenal Medulla, Megakaryocytes, and Platelets. American Journal Of Pathology 2012, 180: 1715-1725. PMID: 22310467, PMCID: PMC3349900, DOI: 10.1016/j.ajpath.2011.12.026.Peer-Reviewed Original ResearchMeSH KeywordsAdrenal MedullaAnimalsBlood PlateletsCells, CulturedCytoplasmEndothelial CellsGene Expression RegulationGenotypeGlycoproteinsHomeodomain ProteinsLuminescent ProteinsLymph NodesLymphatic VesselsMegakaryocytesMembrane Transport ProteinsMiceMice, Inbred C57BLMice, TransgenicMicroscopy, FluorescenceTumor Cells, CulturedTumor Suppressor ProteinsConceptsLymph nodesLymphatic vesselsAdrenal medullaExpression of Prox1Tumor metastasisHigh endothelial venulesProx1 expressionTwo-photon laser scanning microscopyTransplant rejectionDentate gyrusEndothelial venulesAntigen presentationC57BL/6 backgroundTransgenic miceLipid metabolismMiceNeuroendocrine cellsAdult liverNovel siteMetastasisMedullaStudy of diseasesLiving mouseUnknown rolePotential utility
2005
Integration of engrafted Schwann cells into injured peripheral nerve: Axonal association and nodal formation on regenerated axons
Radtke C, Akiyama Y, Lankford KL, Vogt PM, Krause DS, Kocsis JD. Integration of engrafted Schwann cells into injured peripheral nerve: Axonal association and nodal formation on regenerated axons. Neuroscience Letters 2005, 387: 85-89. PMID: 16084645, PMCID: PMC2605373, DOI: 10.1016/j.neulet.2005.06.073.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxotomyCell Adhesion Molecules, NeuronalCell CompartmentationCytoplasmDisease Models, AnimalFemaleGreen Fluorescent ProteinsImmunohistochemistryMaleMiceMice, Inbred C57BLMicroscopy, Electron, TransmissionMyelin SheathNAV1.6 Voltage-Gated Sodium ChannelNerve RegenerationNerve Tissue ProteinsPeripheral Nerve InjuriesPeripheral NervesRanvier's NodesSchwann CellsSciatic NeuropathySodium ChannelsY ChromosomeConceptsWild-type miceSchwann cellsMyelin-forming cellsRegenerated axonsSodium channelsType miceRegenerated peripheral nerve fibersFemale wild-type miceDonor cellsMale donor cellsPeripheral nerve fibersSciatic nerve axonsImmuno-electron microscopic analysisCrush injuryCrush sitePeripheral nervesDonor originMale miceNerve fibersNerve axonsNodal formationAxonsNerveMiceAxonal associations
1994
Characterization of Murine CD34, a Marker for Hematopoietic Progenitor and Stem Cells
Krause D, Ito T, Fackler M, Smith O, Collector M, Sharkis S, May W. Characterization of Murine CD34, a Marker for Hematopoietic Progenitor and Stem Cells. Blood 1994, 84: 691-701. PMID: 7519070, DOI: 10.1182/blood.v84.3.691.691.Peer-Reviewed Original ResearchConceptsFull-length CD34Colony-forming unit-spleenM1 leukemia cellsMurine CD34Stem cellsHematopoietic progenitorsMurine hematopoietic stem cellsProgenitor cellsBone marrow cellsEmbryonic stem cellsHuman hematopoietic stemPotential functional differencesLong-term repopulating abilityCell linesFunctional hematopoietic progenitorsFull-length formCHO-K1 cell lineDifferent cell typesMurine cell linesPattern of expressionPA6 stromal cellsHematopoietic stem cellsLeukemia cellsHematopoietic progenitor cellsApparent molecular weight