2016
In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery
Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, López-Giráldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nature Communications 2016, 7: 13304. PMID: 27782131, PMCID: PMC5095181, DOI: 10.1038/ncomms13304.Peer-Reviewed Original ResearchConceptsNanoparticle deliveryGene correctionReversal of splenomegalyPeptide nucleic acidLow off-target effectsVivo correctionGenome editingOff-target effectsGene editingHaematopoietic stem cellsNucleic acidsDonor DNAStem cellsΓPNAΒ-thalassaemiaNanoparticlesDeliveryEditingSCF treatmentTriplex formation
2011
Targeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate
Rogers FA, Lin SS, Hegan DC, Krause DS, Glazer PM. Targeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate. Molecular Therapy 2011, 20: 109-118. PMID: 21829173, PMCID: PMC3255600, DOI: 10.1038/mt.2011.163.Peer-Reviewed Original ResearchConceptsGene modificationGene therapyHematopoietic stem cell gene therapyStem cell gene therapyGenomic modificationsVivo gene therapyCell gene therapyTargeted gene modificationVivo gene modificationHematopoietic progenitor cellsPeptide nucleic acidSystemic administrationBone marrowGene-targeting strategiesProgenitor cellsPrimary recipient miceStem cell mobilizationEx vivo manipulationSickle cell anemiaLymphoid cell lineagesDonor miceRecipient miceHematologic disordersInvasive alternativeCell mobilization
2006
Engraftment of Marrow-derived Epithelial Cells
Herzog EL, Krause DS. Engraftment of Marrow-derived Epithelial Cells. Annals Of The American Thoracic Society 2006, 3: 691-695. PMID: 17065375, PMCID: PMC2647654, DOI: 10.1513/pats.200605-109sf.BooksAssessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation
Bruscia EM, Price JE, Cheng EC, Weiner S, Caputo C, Ferreira EC, Egan ME, Krause DS. Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 2965-2970. PMID: 16481627, PMCID: PMC1413802, DOI: 10.1073/pnas.0510758103.Peer-Reviewed Original ResearchConceptsCftr-/- miceEpithelial cellsNasal epitheliumBM-derived cellsBone marrow transplantationWild-type BMAirway epithelial cellsCystic fibrosis transmembrane conductance regulator (CFTR) activityCystic fibrosis miceRare epithelial cellsCftr-null miceMarrow transplantationBM transplantationFibrosis miceRespiratory tractCFTR activityGI tractBone marrowGastrointestinalChloride secretionCFTR-dependent chloride secretionIndividual miceTransplantationDifferent dosesMice
2004
Stromal Cell–Derived Factor-1α Plays a Critical Role in Stem Cell Recruitment to the Heart After Myocardial Infarction but Is Not Sufficient to Induce Homing in the Absence of Injury
Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal Cell–Derived Factor-1α Plays a Critical Role in Stem Cell Recruitment to the Heart After Myocardial Infarction but Is Not Sufficient to Induce Homing in the Absence of Injury. Circulation 2004, 110: 3300-3305. PMID: 15533866, DOI: 10.1161/01.cir.0000147780.30124.cf.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzylaminesBone Marrow CellsBone Marrow TransplantationCell LineageCell MovementChemokine CXCL12Chemokines, CXCCyclamsFemaleGene Expression ProfilingGene Expression RegulationGenetic TherapyHeterocyclic CompoundsIntercellular Adhesion Molecule-1Matrix Metalloproteinase 9MiceMice, Inbred NODMice, SCIDMyocardial InfarctionMyocardiumReceptors, CXCR4Recombinant Fusion ProteinsStem Cell TransplantationStem CellsTransduction, GeneticVascular Cell Adhesion Molecule-1Vascular Endothelial Growth Factor AConceptsBone marrow-derived cellsStromal cell-derived factor-1alphaMyocardial infarctionBMDC recruitmentAdhesion molecule-1Molecule-1Recruitment of BMDCsInfarcted heartSerum SDF-1 levelsVascular cell adhesion molecule-1Intercellular adhesion molecule-1Stromal cell-derived factor-1αCell adhesion molecule-1Administration of AMD3100SDF-1/CXCR4 interactionMarrow-derived cellsSDF-1 levelsAbsence of MIVascular endothelial growth factorMatrix metalloproteinase-9Sham-operated controlsSDF-1 mRNAEndothelial growth factorAbsence of injuryQuantitative polymerase chain reaction
2002
Marrow-Derived Cells as Vehicles for Delivery of Gene Therapy to Pulmonary Epithelium
Grove JE, Lutzko C, Priller J, Henegariu O, Theise ND, Kohn DB, Krause DS. Marrow-Derived Cells as Vehicles for Delivery of Gene Therapy to Pulmonary Epithelium. American Journal Of Respiratory Cell And Molecular Biology 2002, 27: 645-651. PMID: 12444022, DOI: 10.1165/rcmb.2002-0056rc.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow TransplantationFemaleGene ExpressionGenetic TherapyGreen Fluorescent ProteinsHematopoietic Stem Cell TransplantationIndicators and ReagentsLuminescent ProteinsLung DiseasesMiceMice, Inbred C57BLProtein PrecursorsProteolipidsRespiratory MucosaRetroviridaeRNA, MessengerConceptsBone marrow-derived stem cellsLung epithelial cellsLung epitheliumEpithelial cellsMarrow-derived stem cellsGene therapyBMSC transplantationLung diseaseFemale miceAirway epitheliumAlveolar spaceLong-term transgene expressionMale marrowPulmonary epitheliumLong-term gene expressionGene therapy applicationsGene expressionPulmonary airwaysAdenoviral vectorEpitheliumMarrowTherapyTransient gene expressionNonviral vectorsStem cells