2020
Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19
Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19. The Journal Of Immunology 2020, 205: ji2000513. PMID: 32493814, PMCID: PMC7343621, DOI: 10.4049/jimmunol.2000513.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsAntiviral AgentsBetacoronavirusCoronavirus InfectionsCOVID-19COVID-19 Drug TreatmentHumansImmunity, InnateInflammasomesIntercellular Signaling Peptides and ProteinsMacrophages, AlveolarPandemicsPneumonia, ViralPyroptosisSARS-CoV-2Severe acute respiratory syndrome-related coronavirusSignal TransductionConceptsSevere acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infectionSevere acute respiratory syndrome-related coronavirus 2Coronavirus disease 2019 (COVID-19) patientsSevere coronavirus disease 2019Coronavirus 2 infectionAvailable pharmaceutical agentsCoronavirus disease 2019Innate immune pathwaysClinical outcomesCoronavirus 2Inflammatory responseCellular pyroptosisDisease 2019Downstream cytokinesInflammasome activationInflammasome pathwayTherapeutic targetImmune pathwaysPromising targetPharmaceutical agentsCOVID-19PyroptosisPatientsCytokinesInflammasome
2016
CD301b+ Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha
Kumamoto Y, Camporez JP, Jurczak MJ, Shanabrough M, Horvath T, Shulman GI, Iwasaki A. CD301b+ Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha. Immunity 2016, 45: 583-596. PMID: 27566941, PMCID: PMC5033704, DOI: 10.1016/j.immuni.2016.08.002.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsEnergy MetabolismFemaleGlucoseInsulinInsulin ResistanceIntercellular Signaling Peptides and ProteinsLectins, C-TypeMacrophagesMaleMiceMice, Inbred C57BLPhagocytesConceptsMononuclear phagocytesResistin-like molecule αResistin-like molecule alphaSignificant weight lossPositive energy balanceInsulin sensitivityGlucose metabolismAdipose tissueBody weightMultiple organsMultifunctional cytokineBody homeostasisMarked reductionHeterogeneous groupWeight lossPhagocytesMolecule αHomeostasisEnergy balanceRELMαCD301bNormoglycemiaCytokinesMacrophages
2002
The CXC Chemokine Murine Monokine Induced by IFN-γ (CXC Chemokine Ligand 9) Is Made by APCs, Targets Lymphocytes Including Activated B Cells, and Supports Antibody Responses to a Bacterial Pathogen In Vivo
Park MK, Amichay D, Love P, Wick E, Liao F, Grinberg A, Rabin RL, Zhang HH, Gebeyehu S, Wright TM, Iwasaki A, Weng Y, DeMartino JA, Elkins KL, Farber JM. The CXC Chemokine Murine Monokine Induced by IFN-γ (CXC Chemokine Ligand 9) Is Made by APCs, Targets Lymphocytes Including Activated B Cells, and Supports Antibody Responses to a Bacterial Pathogen In Vivo. The Journal Of Immunology 2002, 169: 1433-1443. PMID: 12133969, DOI: 10.4049/jimmunol.169.3.1433.Peer-Reviewed Original ResearchConceptsT cellsActivated B cellsB cellsDendritic cellsIFN-gammaIntracellular bacterium Francisella tularensis live vaccine strainChemotactic factorsCell activationFrancisella tularensis live vaccine strainRole of MIGT cell infiltrationTularensis live vaccine strainOptimal humoral responsesLive vaccine strainT cell activationB cell activationHuman T cellsReceptor CXCR3Humoral responseCell infiltrationLymphoid organsTarget lymphocytesCXC chemokinesInflammatory reactionPeripheral tissues