2022
Inflammasome activation in infected macrophages drives COVID-19 pathology
Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B, Blackburn HN, Velazquez SE, Chen YG, Halene S, Iwasaki A, Meffre E, Nussenzweig M, Lieberman J, Wilen CB, Kluger Y, Flavell RA. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022, 606: 585-593. PMID: 35483404, PMCID: PMC9288243, DOI: 10.1038/s41586-022-04802-1.Peer-Reviewed Original ResearchConceptsInflammasome activationLung inflammationInflammatory responseInfected macrophagesSARS-CoV-2 infectionHuman macrophagesChronic lung pathologyPersistent lung inflammationSevere COVID-19Immune inflammatory responseInflammatory cytokine productionHumanized mouse modelNLRP3 inflammasome pathwayCOVID-19 pathologyCOVID-19SARS-CoV-2Productive viral cycleHyperinflammatory stateChronic stageIL-18Cytokine productionInflammatory cytokinesLung pathologyInflammasome pathwayInterleukin-1
2020
Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19
Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19. The Journal Of Immunology 2020, 205: ji2000513. PMID: 32493814, PMCID: PMC7343621, DOI: 10.4049/jimmunol.2000513.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsAntiviral AgentsBetacoronavirusCoronavirus InfectionsCOVID-19COVID-19 Drug TreatmentHumansImmunity, InnateInflammasomesIntercellular Signaling Peptides and ProteinsMacrophages, AlveolarPandemicsPneumonia, ViralPyroptosisSARS-CoV-2Severe acute respiratory syndrome-related coronavirusSignal TransductionConceptsSevere acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infectionSevere acute respiratory syndrome-related coronavirus 2Coronavirus disease 2019 (COVID-19) patientsSevere coronavirus disease 2019Coronavirus 2 infectionAvailable pharmaceutical agentsCoronavirus disease 2019Innate immune pathwaysClinical outcomesCoronavirus 2Inflammatory responseCellular pyroptosisDisease 2019Downstream cytokinesInflammasome activationInflammasome pathwayTherapeutic targetImmune pathwaysPromising targetPharmaceutical agentsCOVID-19PyroptosisPatientsCytokinesInflammasome
2011
Microbiota regulates immune defense against respiratory tract influenza A virus infection
Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 5354-5359. PMID: 21402903, PMCID: PMC3069176, DOI: 10.1073/pnas.1019378108.Peer-Reviewed Original ResearchConceptsInfluenza virus infectionVirus infectionDendritic cellsImmune responseCommensal bacteriaRespiratory influenza virus infectionToll-like receptor ligandsVirus-specific CD4CD8 T cellsT cell primingCommensal microbiota compositionProductive immune responseExpression of mRNADistal injectionLymph nodesImmune impairmentIntact microbiotaIL-1βAntibody responseImmune homeostasisRespiratory mucosaAntibiotic treatmentT cellsInflammasome activationCommensal microbiota
2010
Inflammasomes as mediators of immunity against influenza virus
Pang IK, Iwasaki A. Inflammasomes as mediators of immunity against influenza virus. Trends In Immunology 2010, 32: 34-41. PMID: 21147034, PMCID: PMC3017631, DOI: 10.1016/j.it.2010.11.004.Peer-Reviewed Original ResearchConceptsToll-like receptor 7Influenza virusMediators of immunityInfluenza virus infectionHuman respiratory infectionsRetinoic acid-inducible gene IAcid-inducible gene IInducible gene IInnate immune systemAdaptive immune defenseEndosomal recognitionInnate detectionRespiratory infectionsReceptor 7Virus infectionCytosolic recognitionInflammasome activationLike receptorsImmune systemImmune defenseMajor causeGene IVirusSuch activationMultiple mechanisms
2009
Inflammasome recognition of influenza virus is essential for adaptive immune responses
Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. Journal Of Experimental Medicine 2009, 206: 79-87. PMID: 19139171, PMCID: PMC2626661, DOI: 10.1084/jem.20081667.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody FormationApoptosis Regulatory ProteinsCalcium-Binding ProteinsCARD Signaling Adaptor ProteinsCarrier ProteinsCaspase 1CD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCell MovementCytoskeletal ProteinsDendritic CellsImmunity, CellularImmunity, InnateImmunoglobulin IsotypesInterleukin-1betaLungMacrophages, AlveolarMiceMice, Inbred C57BLMice, KnockoutMultiprotein ComplexesNasal Lavage FluidNLR Family, Pyrin Domain-Containing 3 ProteinOrthomyxoviridaeOrthomyxoviridae InfectionsReceptors, Interleukin-1Survival AnalysisConceptsInfluenza virus infectionNOD-like receptorsInfluenza virusVirus infectionAdaptive immunityInflammasome activationRetinoic acid-inducible gene I.CD8 T cell responsesCaspase-1Influenza virus resultsMucosal IgA secretionProtective antiviral immunitySystemic IgG responseCD4 T cellsT cell responsesAdaptive immune responsesType I interferonInnate immune systemRespiratory infectionsIgG responsesProtective immunityTLR signalsIgA secretionReceptor 7T cellsInflammasomes in viral infection
Ichinohe T, Iwasaki A. Inflammasomes in viral infection. Uirusu 2009, 59: 13. PMID: 19927984, DOI: 10.2222/jsv.59.13.Peer-Reviewed Original ResearchConceptsNOD-like receptorsProinflammatory cytokine interleukin-1betaRole of inflammasomesInfluenza virus infectionCytokine interleukin-1betaInnate immune responseCaspase-1 activationIL-33IL-18NLRP3 inflammasomeVirus infectionImmune responseInterleukin-1betaAdaptive immunityInflammasome activationMicrobial motifsDamage-associated signalsViral infectionInflammasomeMultiprotein complexesAdaptor proteinInfectionCertain virusesCell deathIntracellular sensors