2024
Self-assembly of malto-oligosaccharide-block-solanesol in aqueous solutions: Investigating morphology and sugar-based physiological compatibility
Lang W, Watanabe T, Lee C, Fukushima S, Li F, Yamamoto T, Tajima K, Tagami T, Borsali R, Takahashi K, Satoh T, Isono T. Self-assembly of malto-oligosaccharide-block-solanesol in aqueous solutions: Investigating morphology and sugar-based physiological compatibility. Carbohydrate Polymers 2024, 352: 123207. PMID: 39843108, DOI: 10.1016/j.carbpol.2024.123207.Peer-Reviewed Original ResearchConceptsWorm-like structureSelf-AssemblySolution self-assemblySmall-angle X-ray scatteringDynamic light scattering experimentsX-ray scatteringWorm-like micellesCo-oligomersClick chemistryTransmission electron microscopyNanopatterning applicationsLight scattering experimentsAqueous solutionLectin recognitionMicelle concentrationDiverse morphologiesScattering experimentsElectron microscopyPolarization parametersProbe methodRelaxation timeMicellesCMCGLCMorphologyFully biosourced amphiphilic block copolymer from tamarind seed xyloglucan and solanesol: synthesis, aqueous self-assembly, and drug encapsulation
Lang W, Watanabe T, Lee C, Tagami T, Li F, Yamamoto T, Tajima K, Borsali R, Takahashi K, Satoh T, Isono T. Fully biosourced amphiphilic block copolymer from tamarind seed xyloglucan and solanesol: synthesis, aqueous self-assembly, and drug encapsulation. Carbohydrate Polymers 2024, 352: 123181. PMID: 39843085, DOI: 10.1016/j.carbpol.2024.123181.Peer-Reviewed Original ResearchConceptsAqueous self-assemblyAmphiphilic block copolymersDegree of polymerizationSelf-AssemblyBlock copolymersSpherical micellesNumber-average degree of polymerizationSmall-angle X-ray scatteringInvestigated block copolymersX-ray scatteringDynamic light scatteringClick chemistryTransmission electron microscopyHydrophilic blockWormlike structuresAqueous mediaCopolymersStructural analysisWater-insoluble flavonoidLight scatteringMicellesElectron microscopyDrug encapsulationHydrophobic segmentsMulti-angle dynamic light scattering
2022
Dual-targeted enzyme-sensitive hyaluronic acid nanogels loading paclitaxel for the therapy of breast cancer
Gao D, Asghar S, Ye J, Zhang M, Hu R, Wang Y, Huang L, Yuan C, Chen Z, Xiao Y. Dual-targeted enzyme-sensitive hyaluronic acid nanogels loading paclitaxel for the therapy of breast cancer. Carbohydrate Polymers 2022, 294: 119785. PMID: 35868795, DOI: 10.1016/j.carbpol.2022.119785.Peer-Reviewed Original ResearchConceptsBreast cancerHyaluronic acid nanogelsTumor-bearing BALB/c miceTherapy of breast cancerTreatment of breast cancerTargeting breast cancerBreast cancer cellsRat pharmacokinetic profilesIn vivo studiesTherapeutic efficacyBALB/c miceEntrapment efficiencyPharmacokinetic profileCancer cellsClearance rateCD44 receptorControl groupCancerPaclitaxelDrug loadingHigher cytotoxicityReceptorsCD44DrugCells
2018
Differences in Nanoparticle Uptake in Transplanted and Autochthonous Models of Pancreatic Cancer
Tao Z, Muzumdar MD, Detappe A, Huang X, Xu ES, Yu Y, Mouhieddine TH, Song H, Jacks T, Ghoroghchian PP. Differences in Nanoparticle Uptake in Transplanted and Autochthonous Models of Pancreatic Cancer. Nano Letters 2018, 18: 2195-2208. PMID: 29533667, PMCID: PMC5957485, DOI: 10.1021/acs.nanolett.7b04043.Peer-Reviewed Original ResearchConceptsPancreatic ductal adenocarcinomaHuman pancreatic ductal adenocarcinomaPancreatic tumorsMouse modelAutochthonous modelPoor overall prognosisAutochthonous mouse modelAutochthonous tumor modelTumor cell clustersOverall prognosisSurvival outcomesPancreatic cancerDuctal adenocarcinomaTransplanted tumorPreclinical studiesFree drug formulationDense stromaPreclinical testingTumor modelTumorsOxaliplatinNoninvasive optical imagingAnticancer agentsAnticancer drugsTherapeutic formulations
2016
Selective Recognition of d‑Aldohexoses in Water by Boronic Acid-Functionalized, Molecularly Imprinted Cross-Linked Micelles
Awino JK, Gunasekara RW, Zhao Y. Selective Recognition of d‑Aldohexoses in Water by Boronic Acid-Functionalized, Molecularly Imprinted Cross-Linked Micelles. Journal Of The American Chemical Society 2016, 138: 9759-9762. PMID: 27442012, PMCID: PMC4982515, DOI: 10.1021/jacs.6b04613.Peer-Reviewed Original Research
2012
A Randomized Trial Investigating the Efficacy and Safety of Water Soluble Micellar Paclitaxel (Paccal Vet) for Treatment of Nonresectable Grade 2 or 3 Mast Cell Tumors in Dogs
Vail D, von Euler H, Rusk A, Barber L, Clifford C, Elmslie R, Fulton L, Hirschberger J, Klein M, London C, Martano M, McNiel E, Morris J, Northrup N, Phillips B, Polton G, Post G, Rosenberg M, Ruslander D, Sahora A, Siegel S, Thamm D, Westberg S, Winter J, Khanna C. A Randomized Trial Investigating the Efficacy and Safety of Water Soluble Micellar Paclitaxel (Paccal Vet) for Treatment of Nonresectable Grade 2 or 3 Mast Cell Tumors in Dogs. Journal Of Veterinary Internal Medicine 2012, 26: 598-607. PMID: 22390318, PMCID: PMC3837094, DOI: 10.1111/j.1939-1676.2012.00897.x.Peer-Reviewed Original ResearchConceptsMast cell tumorsAdverse eventsCell tumorsGrade 2Response ratePositive-controlled clinical trialMajority of AEsOverall response rateEarly phase studiesObserved response rateMechanism of actionAvailable TKIsPrimary endpointProspective multicenterSecondary endpointsSafety profileAE profileClinical trialsEffective treatmentPaclitaxel activityClinical importanceCombination protocolMicellar paclitaxelPaclitaxelLomustine
2010
Solution Structure and Phospholipid Interactions of the Isolated Voltage-Sensor Domain from KvAP
Butterwick JA, MacKinnon R. Solution Structure and Phospholipid Interactions of the Isolated Voltage-Sensor Domain from KvAP. Journal Of Molecular Biology 2010, 403: 591-606. PMID: 20851706, PMCID: PMC2971526, DOI: 10.1016/j.jmb.2010.09.012.Peer-Reviewed Original ResearchConceptsNuclear Overhauser effect spectroscopyNuclear magnetic resonance spectroscopySolution structureIsolated voltage-sensor domainBilayer-forming lipidsMagnetic resonance spectroscopyMicelle interactionsEffect spectroscopyChemical environmentCrystal structurePhospholipid interfaceChemical propertiesResonance spectroscopyPhospholipid micellesMembrane environmentPhospholipid bilayersNanosecond timescaleMillisecond timescaleMicellesSpectroscopyAmphipathic α-helixΑ-helixVoltage sensor domainRelaxation experimentsPhysical properties
2008
Backbone structure of a small helical integral membrane protein: A unique structural characterization
Page RC, Lee S, Moore JD, Opella SJ, Cross TA. Backbone structure of a small helical integral membrane protein: A unique structural characterization. Protein Science 2008, 18: 134-146. PMID: 19177358, PMCID: PMC2708045, DOI: 10.1002/pro.24.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsSmall integral membrane proteinMembrane proteinsHelical integral membrane proteinsBackbone structureThree-dimensional backbone structureStructural characterizationTransmembrane helix proteinMembrane-mimetic environmentsAmino acid sequenceSolution NMR spectroscopyStructure determination approachChemical shift indexParamagnetic relaxation enhancementHelix proteinsTransmembrane domainExtramembranous domainsMembrane mimeticsMimetic environmentsStructural biologyDihedral restraintsGlobal foldAcid sequenceNMR spectroscopyOrientational restraints
2004
Functional Characterization and NMR Spectroscopy on Full-Length Vpu from HIV-1 Prepared by Total Chemical Synthesis
Kochendoerfer G, Jones D, Lee S, Oblatt-Montal M, Opella S, Montal M. Functional Characterization and NMR Spectroscopy on Full-Length Vpu from HIV-1 Prepared by Total Chemical Synthesis. Journal Of The American Chemical Society 2004, 126: 2439-2446. PMID: 14982452, DOI: 10.1021/ja038985i.Peer-Reviewed Original ResearchConceptsTotal chemical synthesisChemical synthesisNMR spectroscopyNative chemical ligation methodologyMembrane proteinsSolid-phase peptide synthesisSolid-state NMR spectraRecombinant proteinsPhase peptide synthesisSolution NMR spectroscopyFull-length VpuIntegral membrane proteinsHydrated lipid bilayerHomogeneous membrane proteinsLigation methodologyChemical ligationPeptide synthesisNMR spectraBacterial expressionFunctional characterizationSynthetic proteinsLipid micellesLipid bilayersCharacterization studiesOverall topology
2003
Structure and dynamics of a membrane protein in micelles from three solution NMR experiments
Lee S, Mesleh MF, Opella SJ. Structure and dynamics of a membrane protein in micelles from three solution NMR experiments. Journal Of Biomolecular NMR 2003, 26: 327-334. PMID: 12815259, DOI: 10.1023/a:1024047805043.Peer-Reviewed Original ResearchConceptsMembrane proteinsSolution NMR experimentsPISA wheelsLoop regionDipolar wavesResidual dipolar couplingsBackbone amide resonancesPf1 coat proteinHigh-throughput structural characterizationHeteronuclear NOE experimentsMembrane-bound formHydrophobic helicesHMQC-NOESY experimentsAmphipathic helixCoat proteinNMR experimentsMobile residuesHelical residuesBackbone dynamicsChemical shift anisotropyProteinAmide resonancesHelixResidual chemical shift anisotropyDipolar couplingsStructures of neuropeptide γ from goldfish and mammalian neuropeptide γ, as determined by 1H NMR spectroscopy
Lee K, Lee S, Kim Y, Park NG. Structures of neuropeptide γ from goldfish and mammalian neuropeptide γ, as determined by 1H NMR spectroscopy. Chemical Biology & Drug Design 2003, 61: 274-285. PMID: 12662361, DOI: 10.1034/j.1399-3011.2003.00058.x.Peer-Reviewed Original ResearchConceptsAmino acid sequenceN-terminal regionAlpha-helical conformationAqueous TFE solutionAcid sequenceShort helixAlpha-helical structureC-terminal regionTerminal amino acid sequencePost-translational processingBeta-turn regionMammalian systemsTFE solutionC-terminusMet21Solution structureNeuropeptide γHelixBiological responsesGold fishBiological actionsSodium dodecyl sulfate micellesHis12Nuclear magnetic resonance spectroscopyNeuropeptide gamma
2001
Short-range specific forces are able to induce hemifusion
Pincet F, Lebeau L, Cribier S. Short-range specific forces are able to induce hemifusion. European Biophysics Journal 2001, 30: 91-97. PMID: 11409468, DOI: 10.1007/s002490100131.Peer-Reviewed Original ResearchConceptsDepletion forcesInterbilayer distanceAdditional attractive forceAmphiphilic moleculesNucleic basesPolar headBiological membranesLipidic systemsModel membranesPossible structuresFluorescent lipid analogsAttractive forceLow water contentLamellar structureLipid analoguesExtra attractionLipid rearrangementBase pairingWater contentMembrane behaviorNucleosidesPhase transitionMembraneMoleculesAdherent vesicles
2000
Interhelical hydrogen bonding drives strong interactions in membrane proteins
Xiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAsparagineCell MembraneChloramphenicol O-AcetyltransferaseCircular DichroismDetergentsDimerizationDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelFungal ProteinsGlycophorinsHydrogen BondingLeucine ZippersMagnetic Resonance SpectroscopyMembrane ProteinsMicellesMicrococcal NucleaseMolecular Sequence DataPeptidesProtein ConformationProtein KinasesProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiae ProteinsConceptsMembrane proteinsHelix associationTransmembrane α-helicesIntegral membrane proteinsInterhelical hydrogen bondingModel transmembrane helixTransmembrane helicesMembrane helicesGCN4 leucine zipperLeucine zipperPolar residuesSoluble proteinHydrophobic leucineΑ-helixBiological membranesProteinHelixNon-specific interactionsValine (HAV) sequenceMembraneZipperFoldingMotifAsparagineResidues
1999
Solution structure of neuromedin B by 1H nuclear magnetic resonance spectroscopy
Lee S, Kim Y. Solution structure of neuromedin B by 1H nuclear magnetic resonance spectroscopy. FEBS Letters 1999, 460: 263-269. PMID: 10544247, DOI: 10.1016/s0014-5793(99)01346-0.Peer-Reviewed Original ResearchConceptsNuclear magnetic resonance spectroscopySDS micellesMagnetic resonance spectroscopyTwo-dimensional nuclear magnetic resonance spectroscopyResonance spectroscopyAromatic ring protonsSolution structureMembrane-mimicking environmentHydrophobic acyl chainsStructure-activity relationshipsMethylene protonsLongitudinal relaxation dataNOESY experimentsHelical conformationConformational featuresRing protonsMicellesMolecular mechanismsSpectroscopyAcyl chainsExtrinsic interactionsRelaxation dataEfficient drugsResiduesProtonsDetergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne
Fisher L, Engelman D, Sturgis J. Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne. Journal Of Molecular Biology 1999, 293: 639-651. PMID: 10543956, DOI: 10.1006/jmbi.1999.3126.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceButyratesCircular DichroismDetergentsDimerizationEnergy TransferFluorescent DyesGlycophorinsHumansKineticsMicellesMolecular Sequence DataPeptide FragmentsPhosphorylcholineProtein Structure, SecondaryQuaternary Ammonium CompoundsSodium Dodecyl SulfateSolventsSpectrometry, FluorescenceThermodynamicsConceptsSpecific chemical interactionsFörster resonance energy transferResonance energy transferSodium dodecyl sulfateComplex solventChemical interactionFar-UV circular dichroismCircular dichroismDodecyl sulfateTransmembrane helix associationDetergent micellesHelix associationEnergy transferThermodynamic measurementsHelix formationObserved KdZwitterionic detergentSecondary structureDimerizationG. von HeijneHelix dimerizationOrders of magnitudeDetergentsTransmembrane helicesTransmembrane domainA Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering
Bu Z, Engelman D. A Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering. Biophysical Journal 1999, 77: 1064-1073. PMID: 10423450, PMCID: PMC1300396, DOI: 10.1016/s0006-3495(99)76956-0.Peer-Reviewed Original ResearchMeSH KeywordsBiophysical PhenomenaBiophysicsButyratesDetergentsDimerizationElectrochemistryGlycophorinsHumansIn Vitro TechniquesMembrane ProteinsMicellesMolecular WeightMutationProtein ConformationProtein Structure, SecondaryQuaternary Ammonium CompoundsRecombinant Fusion ProteinsScattering, RadiationSolutionsSolventsX-RaysConceptsDetergent micellesTransmembrane domainAlpha-helical transmembrane domainsSolution small-angle X-ray scatteringTransmembrane helix associationSolution small-angle X-rayHuman erythrocyte glycophorin ASmall-angle X-ray scatteringMembrane proteinsTransmembrane proteinErythrocyte glycophorin ACarboxyl terminusHelix associationAngle X-ray scatteringGlycophorin AStaphylococcal nucleaseSmall-angle X-rayProteinModel systemMicelle contributionX-ray scatteringAngle X-rayDimerizationGyration analysisN-dodecyl
1997
The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody
Fleming K, Ackerman A, Engelman D. The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 272: 266-275. PMID: 9299353, DOI: 10.1006/jmbi.1997.1236.Peer-Reviewed Original ResearchConceptsSodium dodecylsulfateVan der Waals interactionsAnalytical ultracentrifugationDer Waals interactionsFree energyMolecular association eventsEnergy of dimerizationOctyl etherWaals interactionsMolecular modelingRelative energy scaleDetergent environmentReversible associationEnergy differenceSedimentation equilibriumMonomersTransmembrane α-helicesNon-denaturing detergent solutionsDimer formationΑ-helixDimer stateAssociation eventsDetergent solutionDissociationHelixA Transmembrane Helix Dimer: Structure and Implications
MacKenzie K, Prestegard J, Engelman D. A Transmembrane Helix Dimer: Structure and Implications. Science 1997, 276: 131-133. PMID: 9082985, DOI: 10.1126/science.276.5309.131.Peer-Reviewed Original ResearchConceptsMembrane-spanning alpha helicesSolution nuclear magnetic resonance spectroscopyDimeric transmembrane domainNuclear magnetic resonance spectroscopyTransmembrane helix dimerVan der Waals interactionsDer Waals interactionsAqueous detergent micellesIntermonomer hydrogen bondsTransmembrane helicesTransmembrane domainMagnetic resonance spectroscopyThree-dimensional structureDetergent micellesHelix dimerHydrogen bondsWaals interactionsAlpha-helixResonance spectroscopyGlycophorin ASpecific associationHelixSequence dependenceMicellesSpectroscopy
1996
Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts
MacKenzie K, Prestegard J, Engelman D. Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts. Journal Of Biomolecular NMR 1996, 7: 256-260. PMID: 8785502, DOI: 10.1007/bf00202043.Peer-Reviewed Original ResearchConceptsChemical shiftsPeptide dimersΑ-carbonSide chainsSide-chain rotamer populationsCarbon-carbon couplingLeucine side chainsThree-bond J couplingsNMR pulse sequencesΔ-methyl groupsRotamer populationsMethyl carbonFast exchangeSide-chain rotamersJ-couplingsTransmembrane peptidesDimer interfaceRotameric statesProtein systemsRotamersShift distributionGlycophorin A.DimersChainMethyl
1982
Effects of taurocholate on the size of mixed lipid micelles and their associations with pigment and proteins in rat bile
Reuben A, Howell K, Boyer J. Effects of taurocholate on the size of mixed lipid micelles and their associations with pigment and proteins in rat bile. Journal Of Lipid Research 1982, 23: 1039-1052. PMID: 7142812, DOI: 10.1016/s0022-2275(20)38077-9.Peer-Reviewed Original ResearchConceptsLipid micellesMixed micellesElution profilesHigh molecular weight protein aggregatesMicelle sizeMicellesMicellar radiusMixed lipid micellesBile pigmentsWeight protein aggregatesRat bileSalt peakUnconjugated dyeColumn fractionsTaurocholate concentrationPigmentsSephadex G200 chromatographyConstituents of bileColumnDyeProtein aggregatesEffect of taurocholateChromatographyConcentrationMM
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply