2025
A highly selective and energy efficient approach to boron removal overcomes the Achilles heel of seawater desalination
Pan W, Roy D, Uralcan B, Patel S, Iddya A, Ahn E, Haji-Akbari A, Kamcev J, Elimelech M. A highly selective and energy efficient approach to boron removal overcomes the Achilles heel of seawater desalination. Nature Water 2025, 3: 99-109. DOI: 10.1038/s44221-024-00362-y.Peer-Reviewed Original ResearchHydroxyl groupsImproved electrode performanceMolecular dynamics simulationsBoron selectivityPristine electrodeHydrogen bondsElectrode performanceFunctional electrodesElectrosorption processIon-exchange adsorptionMicroporous electrodesDynamics simulationsFunctional groupsOxygen-containingRemoval selectivityTrace contaminantsElectrosorptionBoron removalElectrodeBoron removal performanceBoronHydroxylBoron removal methodsRemoval of trace contaminantsReverse osmosis
2023
Efficient O -demethylation of lignin-derived aromatic compounds under moderate conditions
Wang Y, Chen M, Yang Y, Ralph J, Pan X. Efficient O -demethylation of lignin-derived aromatic compounds under moderate conditions. RSC Advances 2023, 13: 5925-5932. PMID: 36816077, PMCID: PMC9936356, DOI: 10.1039/d3ra00245d.Peer-Reviewed Original ResearchElectron-withdrawing substituentsCarbonyl groupAlkyl hydroxyl groupsModerate conditionsElectron-donatingMethoxy groupAlkyl hydroxylationHydroxyl groupsStable intermediateLithium bromideAromatic compoundsAromaticsSubstituentsLignin depolymerizationAromatic chemicalsO-demethylationCarbonylLignin-derived aromaticsAlkylationEfficient methodBromideLignin-derived aromatic compoundsHydroxylCompoundsIntermediate
2016
Selective Recognition of d‑Aldohexoses in Water by Boronic Acid-Functionalized, Molecularly Imprinted Cross-Linked Micelles
Awino JK, Gunasekara RW, Zhao Y. Selective Recognition of d‑Aldohexoses in Water by Boronic Acid-Functionalized, Molecularly Imprinted Cross-Linked Micelles. Journal Of The American Chemical Society 2016, 138: 9759-9762. PMID: 27442012, PMCID: PMC4982515, DOI: 10.1021/jacs.6b04613.Peer-Reviewed Original Research
2015
Structure Diversification of Vancomycin through Peptide-Catalyzed, Site-Selective Lipidation: A Catalysis-Based Approach To Combat Glycopeptide-Resistant Pathogens
Yoganathan S, Miller SJ. Structure Diversification of Vancomycin through Peptide-Catalyzed, Site-Selective Lipidation: A Catalysis-Based Approach To Combat Glycopeptide-Resistant Pathogens. Journal Of Medicinal Chemistry 2015, 58: 2367-2377. PMID: 25671771, PMCID: PMC4364393, DOI: 10.1021/jm501872s.Peer-Reviewed Original ResearchConceptsStructure diversificationLipid chain lengthStructure-activity relationship studiesPeptide catalystsCatalytic approachAliphatic hydroxylDerivatization sitesDerivatives 9aGlycopeptide-resistant pathogensNovel antibiotic leadsChain lengthLipid chainsRelationship studiesAntibiotic leadsCatalystCatalysisAntibiotic-resistant infectionsHydroxylHereinScaffoldsBioactivityChainSpectraLipidationIncorporation
2012
Catalytic Site-Selective Thiocarbonylations and Deoxygenations of Vancomycin Reveal Hydroxyl-Dependent Conformational Effects
Fowler BS, Laemmerhold KM, Miller SJ. Catalytic Site-Selective Thiocarbonylations and Deoxygenations of Vancomycin Reveal Hydroxyl-Dependent Conformational Effects. Journal Of The American Chemical Society 2012, 134: 9755-9761. PMID: 22621706, PMCID: PMC3374881, DOI: 10.1021/ja302692j.Peer-Reviewed Original ResearchConceptsPeptide-based catalystsForm of vancomycinNew compoundsVancomycin derivativesRational designConformational consequencesCatalystConformational effectsNew analoguesSelectivity profileBiological activityThiocarbonylationDeoxygenationNative structureStructural roleHydroxylCompoundsDerivativesAnaloguesSubstrateStructureJBP1 and JBP2 Proteins Are Fe2+/2-Oxoglutarate-dependent Dioxygenases Regulating Hydroxylation of Thymidine Residues in Trypanosome DNA*
Cliffe L, Hirsch G, Wang J, Ekanayake D, Bullard W, Hu M, Wang Y, Sabatini R. JBP1 and JBP2 Proteins Are Fe2+/2-Oxoglutarate-dependent Dioxygenases Regulating Hydroxylation of Thymidine Residues in Trypanosome DNA*. Journal Of Biological Chemistry 2012, 287: 19886-19895. PMID: 22514282, PMCID: PMC3370173, DOI: 10.1074/jbc.m112.341974.Peer-Reviewed Original ResearchConceptsRegulation of gene expressionOxygen-sensitive regulatorTranscription initiationDioxygenase superfamilyHost nichesO(2)-dependent mannerSynthesis in vivoIn vivo analysisJBP1Inhibiting iron bindingThymidine residuesGene expressionFe(2+Trypanosome DNAIron bindingParasite virulenceHydroxylation in vitroOxidative decarboxylationDioxygenaseAbsorption spectraProteinAnaerobic conditionsSpectroscopic signaturesReduced levelsHydroxyl
2007
Structural Analysis of Lac Repressor Bound to Allosteric Effectors
Daber R, Stayrook S, Rosenberg A, Lewis M. Structural Analysis of Lac Repressor Bound to Allosteric Effectors. Journal Of Molecular Biology 2007, 370: 609-619. PMID: 17543986, PMCID: PMC2715899, DOI: 10.1016/j.jmb.2007.04.028.Peer-Reviewed Original ResearchConceptsHydrogen bond networkHydrogen bondsExtensive hydrogen-bonding networkWater-mediated hydrogen bond networkSugar ringBond networkCrystal structureHydroxyl groupsAllosteric transitionEffector moleculesAnti-inducerSmall moleculesAtomic detailMoleculesStructural conformationC-terminal sub-domainBondsApo-repressorHydrogenHydroxylRepressor functionLac operonLac repressorN-terminalRepressor
1996
In vitro selection of self-cleaving DNAs
Carmi N, Shultz L, Breaker R. In vitro selection of self-cleaving DNAs. Cell Chemical Biology 1996, 3: 1039-1046. PMID: 9000012, DOI: 10.1016/s1074-5521(96)90170-2.Peer-Reviewed Original ResearchConceptsIndividual catalystsCatalytic DNAEnzyme-like activityChemical transformationsSole cofactorRate enhancementAdditional reactionsCu2DNA enzymeCatalystDNA cleavageBiological contextVitro SelectionUncatalyzed rateOxidative mechanismsDNAFurther optimizationDistinct classesRibozymeHydroxylDeoxyribozymesBiocatalystReactionCleavageCofactor
1993
A general two-metal-ion mechanism for catalytic RNA.
Steitz TA, Steitz JA. A general two-metal-ion mechanism for catalytic RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 6498-6502. PMID: 8341661, PMCID: PMC46959, DOI: 10.1073/pnas.90.14.6498.Peer-Reviewed Original ResearchConceptsMetal ionsTwo-metal-ion mechanismCatalytic metal ionPhosphoryl transfer reactionsChemical catalysisLewis acidTransfer reactionsReaction pathwaysTransition stateProtein enzymesCatalytic siteSugar hydroxylsIonsGroup I self-splicing intronCatalytic RNAReactionSelf-splicing intronsP hydrolysisCatalysisBinding sitesOxyanionsHydroxylSpecific binding sitesHydrolysisAcid
1990
Structure of yeast triosephosphate isomerase at 1.9-A resolution.
Lolis E, Alber T, Davenport R, Rose D, Hartman F, Petsko G. Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry 1990, 29: 6609-18. PMID: 2204417, DOI: 10.1021/bi00480a009.Peer-Reviewed Original ResearchConceptsHydrogen bonding interactionsYeast triosephosphate isomeraseActive site structureNon-hydrogen atomsWater moleculesActive siteActive site residuesDrug designGlu-165Triosephosphate isomeraseSite structureCatalytic baseCrystal contactsSite residuesR factorTIM structuresFlexible loopLys-12Polypeptide chainStructureSubunit interfaceCarboxylateMonomersHydroxylFirst time
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply