2019
Surfactant-Mediated Assembly of Amphiphilic Janus Spheres
Tsyrenova A, Miller K, Yan J, Olson E, Anthony S, Jiang S. Surfactant-Mediated Assembly of Amphiphilic Janus Spheres. Langmuir 2019, 35: 6106-6111. PMID: 30950625, DOI: 10.1021/acs.langmuir.9b00500.Peer-Reviewed Original ResearchAssembly structureSodium dodecyl sulfateJanus particlesApplications of Janus particlesHydrophobic attractionSelf-assembled monolayersHydrophobic self-assembled monolayerVan der Waals (VDWHydrogen bondsSodium dodecyl sulfate adsorptionAmphiphilic moleculesSurfactant moleculesTwo-dimensional (2DSilica hemisphereCrystal caseSilica particlesRotation of particlesVdW forcesDodecyl sulfateCrystalAu coating thicknessVdWParticle dynamicsCluster formationMolecules
2005
Influence of pH on Stability and Dynamic Properties of Asphaltenes and Other Amphiphilic Molecules at the Oil−Water Interface †
Poteau S, Argillier J, Langevin D, Pincet F, Perez E. Influence of pH on Stability and Dynamic Properties of Asphaltenes and Other Amphiphilic Molecules at the Oil−Water Interface †. Energy & Fuels 2005, 19: 1337-1341. DOI: 10.1021/ef0497560.Peer-Reviewed Original ResearchNaphthenic acidsOil/water interfaceSurface active speciesSurface-active componentsDynamic interfacial tensionWater emulsionsAmphiphilic moleculesMolecular arrangementModel oilFunctional groupsWater interfaceSurface activitySynthetic surfactantsAsphaltenesLittle coalescenceInterfacial propertiesViscous heavy oilWater dropletsOil dropsEmulsionsInterfacial tensionCrude oilMaltenesMicroscopic propertiesLow pH
2001
Short-range specific forces are able to induce hemifusion
Pincet F, Lebeau L, Cribier S. Short-range specific forces are able to induce hemifusion. European Biophysics Journal 2001, 30: 91-97. PMID: 11409468, DOI: 10.1007/s002490100131.Peer-Reviewed Original ResearchConceptsDepletion forcesInterbilayer distanceAdditional attractive forceAmphiphilic moleculesNucleic basesPolar headBiological membranesLipidic systemsModel membranesPossible structuresFluorescent lipid analogsAttractive forceLow water contentLamellar structureLipid analoguesExtra attractionLipid rearrangementBase pairingWater contentMembrane behaviorNucleosidesPhase transitionMembraneMoleculesAdherent vesicles
2000
Partitioning of Ethoxylated Nonionic Surfactants in Water/NAPL Systems: Effects of Surfactant and NAPL Properties
Cowell M, Kibbey T, Zimmerman J, Hayes K. Partitioning of Ethoxylated Nonionic Surfactants in Water/NAPL Systems: Effects of Surfactant and NAPL Properties. Environmental Science And Technology 2000, 34: 1583-1588. DOI: 10.1021/es9908826.Peer-Reviewed Original ResearchWater interfacial tensionNonionic surfactantsEffect of surfactantsSurfactant hydrophobicityInterfacial tensionNonaqueous phase liquidsSurfactant critical micelle concentrationEthoxylated nonionic surfactantsSurfactant remediationHigh surfactant concentrationsCritical micelle concentrationDifferent chemical structuresAmphiphilic moleculesChemical structureAqueous phaseOrganic phaseMicelle concentrationNAPL propertiesSurfactant concentrationNAPL contaminantsNonaqueous phaseSurfactantsSurfactant partitioningFinite solubilityPolydispersity
1997
Quantitative Analysis of Holes in Supported Bilayers Providing the Adsorption Energy of Surfactants on Solid Substrate
Bassereau P, Pincet F. Quantitative Analysis of Holes in Supported Bilayers Providing the Adsorption Energy of Surfactants on Solid Substrate. Langmuir 1997, 13: 7003-7007. DOI: 10.1021/la970515c.Peer-Reviewed Original ResearchSecond monolayerFirst monolayerMode atomic force microscopy experimentsAtomic force microscopy experimentsForce microscopy experimentsMicroscopy experimentsHolesSupported bilayersDesorption of lipidRange 1Ratio measurementsAdsorption energyMonolayersEnergySolid surfaceBilayersSolid substrateMixed bilayersLow adsorption energyAmphiphilic moleculesQuantitative analysisMeasurementsSimple techniqueNew simple techniqueDOPC
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply