2024
A phase Ib/II study of pacritinib, an interleukin 1 receptor associated kinase 1 (IRAK1) inhibitor, in patients (pts) with solid tumors harboring the 1q21.3 copy number amplification (CNA).
Lim J, Aau M, Yeong J, Goh B, Yong W, Soo R, Wong A, Tan D, Chee C, Sundar R, Jeyasekharan A, Wong C, Chen P, Liu H, Yu Q, Tam W, Lee S. A phase Ib/II study of pacritinib, an interleukin 1 receptor associated kinase 1 (IRAK1) inhibitor, in patients (pts) with solid tumors harboring the 1q21.3 copy number amplification (CNA). Journal Of Clinical Oncology 2024, 42: 43-43. DOI: 10.1200/jco.2024.42.23_suppl.43.Peer-Reviewed Original ResearchProgression-free survivalT cell populationsCD8+ T cell populationsCopy number amplificationInterleukin-1 receptor-associated kinase 1Solid tumorsTumor microenvironmentCell populationsDose levelsCD4+ T cell populationRecommended phase II dosePlasma cell-free DNAPeripheral blood mononuclear cells analysisSystemic immune modulationPhase II doseRefractory solid tumorsPhase Ib/II clinical trialDose-expansion cohortDendritic cell populationsMyeloid cell populationsTumor biopsy samplesImmune cell populationsDecreased tumor growthModulated immune cell populationsPreclinical animal modelsSiponimod Attenuates Neuronal Cell Death Triggered by Neuroinflammation via NFκB and Mitochondrial Pathways
Gurrea-Rubio M, Wang Q, Mills E, Wu Q, Pitt D, Tsou P, Fox D, Mao-Draayer Y. Siponimod Attenuates Neuronal Cell Death Triggered by Neuroinflammation via NFκB and Mitochondrial Pathways. International Journal Of Molecular Sciences 2024, 25: 2454. PMID: 38473703, PMCID: PMC10931690, DOI: 10.3390/ijms25052454.Peer-Reviewed Original ResearchConceptsSecondary progressive MSRelapsing-remitting MSCentral nervous systemMultiple sclerosisProgressive MSModulator of sphingosine-1-phosphateCytokine tumor necrosis factor-alphaEffects of siponimodTumor necrosis factor-alphaHeterogeneous clinical courseBouts of inflammationNeuroprotective effectsPreclinical animal modelsAutoimmune demyelinating diseaseNecrosis factor-alphaMitochondrial oxidative phosphorylationHuman induced pluripotent stem cell (iPSC)-derived neuronsSphingosine-1-PhosphateCytokine Signaling PathwaysClinical courseLive cell analysisProgressive diseaseOral treatmentMitochondrial pathwayFactor-alpha
2023
Tolerance Induction in Vascularized Composite Allotransplantation—A Brief Review of Preclinical Models
Huelsboemer L, Kauke-Navarro M, Reuter S, Stoegner V, Feldmann J, Hirsch T, Kueckelhaus M, Dermietzel A. Tolerance Induction in Vascularized Composite Allotransplantation—A Brief Review of Preclinical Models. Transplant International 2023, 36: 10955. PMID: 36846605, PMCID: PMC9946984, DOI: 10.3389/ti.2023.10955.Peer-Reviewed Original ResearchConceptsTolerance inductionLong-term effectsAnimal modelsImmune systemDonor-specific toleranceLong-term outcomesRecipient's immune systemPreclinical animal modelsNovel therapeutic strategiesPre-clinical studiesVascularized Composite AllotransplantationChronic rejectionImmunosuppressive protocolsTransplant recipientsAllograft rejectionOrgan dysfunctionPreclinical modelsComposite allograftsTherapeutic strategiesComposite allotransplantationClinical practiceIS protocolClinical translationInductionReview article
2020
Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas
Wang Y, Wild A, Turcan S, Wu W, Sigel C, Klimstra D, Ma X, Gong Y, Holland E, Huse J, Chan T. Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Science Advances 2020, 6: eaaz3221. PMID: 32494639, PMCID: PMC7176409, DOI: 10.1126/sciadv.aaz3221.Peer-Reviewed Original ResearchIDH-mutant gliomasIsocitrate dehydrogenaseAnimal models of gliomaReduced DNA damage repairRibose polymerase inhibitorsLocal radiation therapyTarget solid tumorsPreclinical animal modelsIsocitrate dehydrogenase mutationModel of gliomaMutant isocitrate dehydrogenaseSynthetic lethal approachTargetable therapeutic vulnerabilitiesDNA damage repairMultiple cancer typesRadiation therapyMultimodal therapyMultiple in vitroSolid tumorsElevated DNA damageTherapeutic vulnerabilitiesTumor cellsPARP inhibitionTreatment strategiesPolymerase inhibitors
2019
Human Ovarian Cancer Tumor Formation in Severe Combined Immunodeficient (SCID) Pigs
Boettcher AN, Kiupel M, Adur MK, Cocco E, Santin AD, Bellone S, Charley SE, Blanco-Fernandez B, Risinger JI, Ross JW, Tuggle CK, Shapiro EM. Human Ovarian Cancer Tumor Formation in Severe Combined Immunodeficient (SCID) Pigs. Frontiers In Oncology 2019, 9: 9. PMID: 30723704, PMCID: PMC6349777, DOI: 10.3389/fonc.2019.00009.Peer-Reviewed Original ResearchPreclinical animal modelsSCID pigsOvarian carcinomaAnimal modelsEar tissueLate-stage diseaseLethal gynecologic malignancyOvarian cancer researchImmunodeficient pigsGynecologic malignanciesCarcinoma cell linesImmunohistochemical phenotypeCytokeratin 7Ovarian cancerXenotransplantation modelNeck musclesOrthotopic modelTumor massOvCa cellsPapillary carcinoma cell lineCarcinomaControl pigsClaudin-4Claudin-3Tumors
2018
In Vivo Imaging With Confirmation by Histopathology for Increased Rigor and Reproducibility in Translational Research: A Review of Examples, Options, and Resources.
Gabrielson K, Maronpot R, Monette S, Mlynarczyk C, Ramot Y, Nyska A, Sysa-Shah P. In Vivo Imaging With Confirmation by Histopathology for Increased Rigor and Reproducibility in Translational Research: A Review of Examples, Options, and Resources. ILAR Journal 2018, 59: 80-98. PMID: 30541081, PMCID: PMC6645176, DOI: 10.1093/ilar/ily010.Peer-Reviewed Original ResearchConceptsAnimal modelsComprehensive pathological evaluationPreclinical animal modelsIn vivo imagingAnimal models of diseaseNoninvasive in vivo imaging methodsPathological evaluationModels of diseaseStandard histopathologyImaging confirmationMicroscopic morphological featuresNoninvasive imagingHistopathologyPathology Study Design, Conduct, and Reporting to Achieve Rigor and Reproducibility in Translational Research Using Animal Models.
Everitt JI, Treuting PM, Scudamore C, Sellers R, Turner PV, Ward JM, Zeiss CJ. Pathology Study Design, Conduct, and Reporting to Achieve Rigor and Reproducibility in Translational Research Using Animal Models. ILAR Journal 2018, 59: 4-12. PMID: 30624739, DOI: 10.1093/ilar/ily020.Peer-Reviewed Original ResearchConceptsAnimal modelsAnimal model-based researchAnimal study dataPreclinical animal modelsHuman clinical experienceHuman clinical trialsPreclinical animal studiesAnimal-based studiesPreclinical animal experimentsPreclinical investigatorsClinical trialsPotential therapyAnimal studiesClinical experiencePathology analysisPathology practiceStudy designAnimal experimentsPathology methodsTranslational researchTissue collectionLimited concordanceComparative pathologistsReproducibility of dataToxicologic PathologyCardiac Progenitor Cells in Basic Biology and Regenerative Medicine
Witman N, Sahara M. Cardiac Progenitor Cells in Basic Biology and Regenerative Medicine. Stem Cells International 2018, 2018: 8283648. PMID: 29535783, PMCID: PMC5832196, DOI: 10.1155/2018/8283648.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsStem cell therapyMyocardial infarctionCardiac progenitor cellsCell therapyMajor cardiovascular eventsProgenitor cellsPreclinical animal modelsCardiovascular stem cell therapyStem cell-based approachesCardiovascular eventsStem/progenitor cell biologyDevice therapyVentricular functionMorbidity rateClinical trialsHeart diseaseProgenitor cell biologyMortality ratePharmacological agentsAnimal modelsPatient careCell-based approachesPhase ITherapyCardiac tissue
2017
Commonalities in epileptogenic processes from different acute brain insults: Do they translate?
Klein P, Dingledine R, Aronica E, Bernard C, Blümcke I, Boison D, Brodie MJ, Brooks‐Kayal A, Engel J, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkänen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpää M, Sloviter RS, Steinhäuser C, Vezzani A, Walker MC, Löscher W. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia 2017, 59: 37-66. PMID: 29247482, PMCID: PMC5993212, DOI: 10.1111/epi.13965.Peer-Reviewed Original ResearchConceptsAcute brain insultsAnimal modelsPrevention therapyBrain insultsBrain injuryInjury etiologyHuman epilepsyClinical testingCentral nervous system infectionFluid percussion injury modelTemporal lobe epilepsy patientsPost-status epilepticus modelDisease modification strategiesNervous system infectionMolecular targetsBetter patient selectionInflammatory cellular infiltrateLoss of neuronsWeeks of injuryBlood-brain barrierTraumatic brain injuryPreclinical animal modelsGap junction couplingCommon histopathologicEpilepsy prevention
2009
The dynamic effects of nicotine on the developing brain
Dwyer JB, McQuown SC, Leslie FM. The dynamic effects of nicotine on the developing brain. Pharmacology & Therapeutics 2009, 122: 125-139. PMID: 19268688, PMCID: PMC2746456, DOI: 10.1016/j.pharmthera.2009.02.003.Peer-Reviewed Original ResearchConceptsNicotine exposureDevelopmental influencesAdolescent periodBrain maturationExogenous nicotineHuman brainUnique effectsMaturational periodNeural structuresLimbic systemClinical literatureNicotine replacement therapyEnvironmental stimuliEarly postnatal periodPreclinical animal modelsDevelopmental windowNicotinic acetylcholine receptorsPrenatal periodReplacement therapyEarly postnatalPostnatal periodTobacco smokeAnimal modelsAcetylcholine receptorsNicotine
2008
T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice
Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P. T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice. Cell 2008, 134: 577-586. PMID: 18691745, PMCID: PMC2943428, DOI: 10.1016/j.cell.2008.06.034.Peer-Reviewed Original ResearchConceptsHIV infectionAntiviral siRNAsT cellsAnimal modelsCD4 T-cell countCD4 T-cell lossPeripheral blood mononuclear cellsSuppress HIV-1 infectionHu-HSC miceHu-PBL miceT-cell countsT cell lossHIV-1 infectionBlood mononuclear cellsNaive T cellsPreclinical animal modelsSuitable animal modelHumanized miceInfected miceMononuclear cellsSuppress viremiaCell countCell lossTherapeutic potentialHematopoietic stem cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply