2023
Targeting the Actions of Muscarinic Receptors on Dopamine Systems: New Strategies for Treating Neuropsychiatric Disorders
Nunes E, Addy N, Conn P, Foster D. Targeting the Actions of Muscarinic Receptors on Dopamine Systems: New Strategies for Treating Neuropsychiatric Disorders. The Annual Review Of Pharmacology And Toxicology 2023, 64: 277-289. PMID: 37552895, PMCID: PMC10841102, DOI: 10.1146/annurev-pharmtox-051921-023858.Peer-Reviewed Original ResearchCholinergic neuronsMuscarinic acetylcholine receptor subtypesDA neuron activityMidbrain DA neuronsAcetylcholine receptor subtypesMood-related disordersPotential clinical implicationsDA circuitryDA neuronsDA releaseMuscarinic receptorsCholinergic regulationReceptor subtypesDopamine systemNeuron activityClinical implicationsNeuropsychiatric disordersDopamine signalingNumerous disordersSubtypesNumerous receptorsDisordersNeuronsReceptorsPublication date
2012
Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells
Jiang H, Ren Y, Yuen E, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nature Communications 2012, 3: 668. PMID: 22314364, PMCID: PMC3498452, DOI: 10.1038/ncomms1669.Peer-Reviewed Original ResearchConceptsMidbrain DA neuronsDA neuronsParkinson's diseaseDopamine utilizationDopaminergic neuronsHuman midbrain dopaminergic neuronsSpontaneous DA releaseNigral DA neuronsNigral dopaminergic neuronsDisease-modifying therapiesMidbrain dopaminergic neuronsParkin knockout miceStem cellsPluripotent stem cellsPD patientsDA releaseDA neurotransmissionDA uptakeNormal subjectsKnockout miceParkin mutationsNovel targetNeuronsOxidative stressMonoamine oxidase
1997
D1–D2 Interaction in Feedback Control of Midbrain Dopamine Neurons
Shi W, Smith P, Pun C, Millet B, Bunney B. D1–D2 Interaction in Feedback Control of Midbrain Dopamine Neurons. Journal Of Neuroscience 1997, 17: 7988-7994. PMID: 9315916, PMCID: PMC6793911, DOI: 10.1523/jneurosci.17-20-07988.1997.Peer-Reviewed Original ResearchConceptsD2-like receptorsDA cellsDA autoreceptorsDA neuronsD1 agonistLow dosesDopamine D1-like receptorsD1 inhibitionD1 effectNigral DA cellsMidbrain DA neuronsD2 agonist quinpiroleD1-like receptorsDA receptor subtypesMidbrain dopamine neuronsOnly low dosesDA receptorsEndogenous DAAgonist quinpiroleD2 agonistIntranigral applicationDopamine neuronsReceptor subtypesRat preparationTarget neurons
1990
Neurotensin attenuates dopamine D2 agonist quinpirole-induced inhibition of midbrain dopamine neurons
Shi W, Bunney B. Neurotensin attenuates dopamine D2 agonist quinpirole-induced inhibition of midbrain dopamine neurons. Neuropharmacology 1990, 29: 1095-1097. PMID: 1982340, DOI: 10.1016/0028-3908(90)90119-c.Peer-Reviewed Original ResearchConceptsD2 agonistDA cellsSingle-unit recording techniquesMidbrain DA neuronsCentral DA systemsDopamine D2 agonistMidbrain dopamine neuronsSpecific D2 agonistDA neuronsIntracerebroventricular administrationDopamine neuronsSpontaneous activityDA systemInhibitory effectRecording techniquesAgonistsNeuronsBiochemical studiesCellsQuinpiroleNeurotensinRatsAdministrationMesocortical dopamine neurons: High basal firing frequency predicts tyrosine dependence of dopamine synthesis
Tam S, Elsworth J, Bradberry C, Roth R. Mesocortical dopamine neurons: High basal firing frequency predicts tyrosine dependence of dopamine synthesis. Journal Of Neural Transmission 1990, 81: 97-110. PMID: 2363911, DOI: 10.1007/bf01245830.Peer-Reviewed Original ResearchConceptsMesoprefrontal DA neuronsDA neuronsTyrosine administrationDA levelsCingulate cortexPrefrontal cortexTyrosine hydroxylationAnxiogenic β-carbolineDA metabolite levelsDA terminal fieldsEndogenous DA levelsMesocortical DA neuronsMesocortical dopamine neuronsVivo tyrosine hydroxylationMidbrain DA neuronsTyrosine hydroxylase activityTransmitter outflowDA metabolitesDA synthesisDopamine neuronsFG 7142Dopamine synthesisTerminal fieldsTyrosine availabilityHigh doses
1988
Effects of Acute and Chronic Neuroleptic Treatment on the Activity of Mid brain Dopamine Neuronsa
BUNNEY B. Effects of Acute and Chronic Neuroleptic Treatment on the Activity of Mid brain Dopamine Neuronsa. Annals Of The New York Academy Of Sciences 1988, 537: 77-85. PMID: 2904786, DOI: 10.1111/j.1749-6632.1988.tb42097.x.Peer-Reviewed Original ResearchConceptsAD administrationDA releaseDA cell activityChronic neuroleptic treatmentMidbrain DA neuronsRelease of DAEffects of AcuteNeurological side effectsDA neuronsNeuroleptic treatmentAcute effectsNerve terminalsSpontaneous activitySide effectsCell activityMarked increaseAdministrationProjection areaPrimary effectReleaseAcuteMarked effectNeuronsActivityBiochemical techniques
1987
The Electrophysiological and Biochemical Pharmacology of the Mesolimbic and Mesocortical Dopamine Neurons
Bannon M, Freeman A, Chiodo L, Bunney B, Roth R. The Electrophysiological and Biochemical Pharmacology of the Mesolimbic and Mesocortical Dopamine Neurons. 1987, 329-374. DOI: 10.1007/978-1-4613-1819-4_5.Peer-Reviewed Original ResearchMidbrain DA systemsDA systemDA-sensitive adenylate cyclaseMesocortical DA systemMesocortical dopamine neuronsNorepinephrine-containing neuronsMidbrain DA neuronsNigrostriatal DA systemMesolimbic DA systemAnatomical studyFluorescence histochemical techniqueSubsequent anatomical studiesDA neuronsNeurons projectCerebral cortexDA pathwayDopamine neuronsLimbic regionsMidbrain dopamineUnconditioned behaviorTopic of reviewNeuronsAdenylate cyclaseBiochemical pharmacologyAnatomical aspects
1985
Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons
Chiodo L, Bunney B. Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. Journal Of Neuroscience 1985, 5: 2539-2544. PMID: 2863337, PMCID: PMC6565310, DOI: 10.1523/jneurosci.05-09-02539.1985.Peer-Reviewed Original ResearchConceptsDA neuronsClozapine administrationChronic treatmentDepolarization inactivationExtracellular single cell recording techniquesInhibitory neurotransmitter gamma-aminobutyric acidNeurotransmitter gamma-aminobutyric acidVentral tegmental area (VTA) dopamineSingle cell recording techniquesA10 DA neuronsVivo spontaneous activityMidbrain DA neuronsChloral hydrate anesthesiaCombination of drugsMidbrain dopamine neuronsGamma-aminobutyric acidDifferential effectsMechanism of actionAcute treatmentMicroiontophoretic applicationSubstantia nigraReceptor antagonistDA cellsDopamine neuronsSpontaneous activity
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply