2023
Implications of Toll-like receptors (TLRs) and their signaling mechanisms in human cancers
Chandrasekar S, Palaniyandi T, Parthasarathy U, Surendran H, Viswanathan S, Wahab M, Baskar G, Natarajan S, Ranjan K. Implications of Toll-like receptors (TLRs) and their signaling mechanisms in human cancers. Pathology - Research And Practice 2023, 248: 154673. PMID: 37453359, DOI: 10.1016/j.prp.2023.154673.Peer-Reviewed Original ResearchToll-like receptorsActivation of TLRsHuman cancersEssential pattern recognition receptorsInnate immune functionNew therapeutic targetsPattern recognition receptorsControl of cancerTLRs 2Inflammatory responseInflammatory microenvironmentEffector functionsImmune functionTherapeutic targetHepatic cancerEpithelial markersCancerHuman lungMost cancersTLR genesReceptorsCancer biomarkersMajor mechanismGene expressionSuch deregulationUrsodeoxycholic acid is associated with a reduction in SARS‐CoV‐2 infection and reduced severity of COVID‐19 in patients with cirrhosis
John B, Bastaich D, Webb G, Brevini T, Moon A, Ferreira R, Chin A, Kaplan D, Taddei T, Serper M, Mahmud N, Deng Y, Chao H, Sampaziotis F, Dahman B. Ursodeoxycholic acid is associated with a reduction in SARS‐CoV‐2 infection and reduced severity of COVID‐19 in patients with cirrhosis. Journal Of Internal Medicine 2023, 293: 636-647. PMID: 37018129, PMCID: PMC12036735, DOI: 10.1111/joim.13630.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionCritical COVID-19Ursodeoxycholic acidPropensity scoreCOVID-19Severe acute respiratory syndrome coronavirus 2Farnesoid X receptor activityAcute respiratory syndrome coronavirus 2Human lungRespiratory syndrome coronavirus 2COVID-19-related deathsRetrospective cohort studyModerate COVID-19Symptomatic COVID-19Multivariable logistic regressionLarge national cohortSyndrome coronavirus 2Coronavirus disease 2019Angiotensin-converting enzymePotential novel targetUDCA useClinical characteristicsCohort studyVaccination statusCoronavirus 2
2022
Abstract 5636: V-delta-1 T cells are resident in the human lung and associate with survival in patients with non-small cell lung cancer in the TRACERx Study
Wu Y, Biswas D, Usaite I, Mihaela A, Boeing S, Karasaki T, Veeriah S, Czyzewska-Khan J, Reading J, Georgiou A, Al-Bakir M, McGranahan N, Jamal-Hanjani M, Hackshaw A, Consortium T, Quezada S, Hayday A, Swanton C. Abstract 5636: V-delta-1 T cells are resident in the human lung and associate with survival in patients with non-small cell lung cancer in the TRACERx Study. Cancer Research 2022, 82: 5636-5636. DOI: 10.1158/1538-7445.am2022-5636.Peer-Reviewed Original ResearchNon-small cell lung cancerCell lung cancerT cell compartmentV delta 1T cellsAssociated with survivalLung cancerTRACERx studyLung tissueAmerican Association for Cancer Research annual meetingsStage I-III non-small cell lung cancerT cell knockout miceCD8+ T cellsMurine tissuesFirst-in-human clinical trialIL-17-producingNon-malignant lung tissueT-cell immunotherapyT-cell receptor sequencingT cell clonesIL-17 productionT helper 1Acute myeloid leukemiaSusceptibility to carcinogenesisHuman lung
2021
The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2
Chow RD, Majety M, Chen S. The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2. Nature Communications 2021, 12: 4. PMID: 33397975, PMCID: PMC7782551, DOI: 10.1038/s41467-020-20323-9.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoV-2 infectionHuman lungCOVID-19Natural killer/T-cellAirway smooth muscle cellsSevere coronavirus diseaseSevere COVID-19Alveolar type 2 cellsMajor risk factorType 2 cellsSmooth muscle cellsSARS-CoV-2 proteomeAge-associated genesAge-associated changesDendritic cellsRisk factorsT cellsGoblet cellsAlveolar fibroblastsCoronavirus diseaseMuscle cellsOlder populationCellular landscapeEndothelial cells
2019
Transcriptional regulatory model of fibrosis progression in the human lung
McDonough JE, Ahangari F, Li Q, Jain S, Verleden SE, Herazo-Maya J, Vukmirovic M, DeIuliis G, Tzouvelekis A, Tanabe N, Chu F, Yan X, Verschakelen J, Homer RJ, Manatakis DV, Zhang J, Ding J, Maes K, De Sadeleer L, Vos R, Neyrinck A, Benos PV, Bar-Joseph Z, Tantin D, Hogg JC, Vanaudenaerde BM, Wuyts WA, Kaminski N. Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight 2019, 4 PMID: 31600171, PMCID: PMC6948862, DOI: 10.1172/jci.insight.131597.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisAdvanced fibrosisAlveolar surface densityFibrosis progressionLung fibrosisHuman lungDynamic Regulatory Events MinerExtent of fibrosisIPF lungsPulmonary fibrosisControl lungsIPF tissueB lymphocytesFibrosisLungLinear mixed-effects modelsMixed-effects modelsGene expression changesSystems biology modelsDifferential gene expression analysisGene expression analysisProgressionGene expression networksRNA sequencingBiology modelsSingle-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2019, 199: 1517-1536. PMID: 30554520, PMCID: PMC6580683, DOI: 10.1164/rccm.201712-2410oc.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingPulmonary fibrosisAlveolar macrophagesLung tissueSingle-cell transcriptomic analysisEpithelial cellsCell populationsNext-generation sequencing technologiesSingle-cell atlasHuman lungDiverse cell populationsExpression of genesRare cell populationsPulmonary fibrosis pathogenesisIdiopathic pulmonary fibrosisAirway stem cellsIndividual cell populationsTranscriptomic analysisSequencing technologiesWnt secretionRNA hybridizationSenescent cellsTransplant donorsDiscovery-based approach
2018
Fibrosis: Lessons from OMICS analyses of the human lung
Yu G, Ibarra GH, Kaminski N. Fibrosis: Lessons from OMICS analyses of the human lung. Matrix Biology 2018, 68: 422-434. PMID: 29567123, PMCID: PMC6015529, DOI: 10.1016/j.matbio.2018.03.014.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisDramatic phenotypic alterationsTranscriptomic studiesOmics analysisOmics profilingOmics technologiesPulmonary fibrosisNumerous aberrationsPhenotypic alterationsMechanistic understandingHuman idiopathic pulmonary fibrosisIPF lung tissueEpithelial cellsCentral roleHuman tissuesIPF samplesNew insightsMolecular featuresIPF lungsInflammatory cellsPatient cohortLung tissueAnimal modelsLethal disorderHuman lung
2017
Bioengineered lungs generated from human iPSCs‐derived epithelial cells on native extracellular matrix
Ghaedi M, Le AV, Hatachi G, Beloiartsev A, Rocco K, Sivarapatna A, Mendez JJ, Baevova P, Dyal RN, Leiby KL, White ES, Niklason LE. Bioengineered lungs generated from human iPSCs‐derived epithelial cells on native extracellular matrix. Journal Of Tissue Engineering And Regenerative Medicine 2017, 12: e1623-e1635. PMID: 29024475, PMCID: PMC5991621, DOI: 10.1002/term.2589.Peer-Reviewed Original ResearchConceptsEpithelial progenitor cellsProgenitor cellsStem cellsEpithelial cellsLung progenitor cellsLung epithelial cellsHuman lungHuman-derived cellsReliable cell sourceNative extracellular matrixEarly stepsExtracellular matrixRat lungImportant early stepHuman iPSCLung regenerationLung tissue regenerationHuman lung tissueIPSCsLung scaffoldsCell sourceCellsEpithelial markersLung transplantationTissue regenerationGlobal and local selection acting on the pathogen Stenotrophomonas maltophilia in the human lung
Chung H, Lieberman T, Vargas S, Flett K, McAdam A, Priebe G, Kishony R. Global and local selection acting on the pathogen Stenotrophomonas maltophilia in the human lung. Nature Communications 2017, 8: 14078. PMID: 28102223, PMCID: PMC5253648, DOI: 10.1038/ncomms14078.Peer-Reviewed Original ResearchConceptsPathogen Stenotrophomonas maltophiliaAdaptive mutationsGenetically close isolatesLocation‐specific selectionsDistant lineagesBacterial genesSpatial co-occurrenceBacterial populationsLocal selectionPathogensMutationsLineagesGenesCystic fibrosisGenomeGeneticsSubpopulationsSequencePhenotypeIsolatesHuman lung
2016
Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas
Li H, Yue D, Jin JQ, Woodard GA, Tolani B, Luh TM, Giroux-Leprieur E, Mo M, Chen Z, Che J, Zhang Z, Zhou Y, Wang L, Hao X, Jablons D, Wang C, He B. Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas. Oncotarget 2016, 5: 80415-80425. PMID: 27533453, PMCID: PMC5348330, DOI: 10.18632/oncotarget.11246.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsAdenocarcinomaAdenocarcinoma of LungAnimalsAntigens, CDAntineoplastic AgentsCadherinsCell MovementEpithelial-Mesenchymal TransitionFemaleGene Expression Regulation, NeoplasticHedgehog ProteinsHumansLung NeoplasmsMaleMice, NudeMiddle AgedNeoplasm InvasivenessSignal TransductionSmoothened ReceptorTime FactorsTumor BurdenXenograft Model Antitumor AssaysZinc Finger Protein GLI1ConceptsEpithelial-mesenchymal transitionLung adenocarcinomaE-cadherin expressionTumor growthLung adenocarcinoma metastasisPotential therapeutic targetInhibition of GLICell migrationAdenocarcinoma metastasisLung cancerInvasion/metastasisTumor invasion/metastasisIndependent cohortGLI inhibitorsSmall molecule inhibitorsTherapeutic targetAdenocarcinomaHuman lungTherapeutic agentsMetastasisCell invasionWound healingCommon typeRole of GliMolecule inhibitors
2013
Hyperoxia and Interferon-γ–Induced Injury in Developing Lungs Occur via Cyclooxygenase-2 and the Endoplasmic Reticulum Stress–Dependent Pathway
Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V. Hyperoxia and Interferon-γ–Induced Injury in Developing Lungs Occur via Cyclooxygenase-2 and the Endoplasmic Reticulum Stress–Dependent Pathway. American Journal Of Respiratory Cell And Molecular Biology 2013, 48: 749-757. PMID: 23470621, PMCID: PMC3727872, DOI: 10.1165/rcmb.2012-0381oc.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBronchopulmonary DysplasiaCelecoxibCell DeathCyclooxygenase 2Cyclooxygenase 2 InhibitorsEndoplasmic Reticulum StressHumansHyperoxiaImmunohistochemistryInfant, NewbornInterferon-gammaLungMiceMice, Inbred C57BLMice, TransgenicPyrazolesRNA, Small InterferingSulfonamidesTranscription Factor CHOPConceptsBronchopulmonary dysplasiaCyclooxygenase-2Endoplasmic reticulum stress-dependent pathwaysER stress pathway activationPathway mediatorsHuman bronchopulmonary dysplasiaFinal common pathwayAlveolar epithelial cellsImpaired alveolarizationStress pathway activationCOX2 inhibitionMurine modelMurine lungClinical relevanceIFNVivo modelHyperoxiaLungHuman lungPathway activationCHOP siRNAStress-dependent pathwaysInjuryEpithelial cellsCommon pathway
2000
Identification of Human Lung and Skin Proteins Conjugated with Hexamethylene DiisocyanateIn Vitro and In Vivo
WISNEWSKI A, SRIVASTAVA R, HERICK C, XU L, LEMUS R, CAIN H, MAGOSKI N, KAROL M, BOTTOMLY K, REDLICH C. Identification of Human Lung and Skin Proteins Conjugated with Hexamethylene DiisocyanateIn Vitro and In Vivo. American Journal Of Respiratory And Critical Care Medicine 2000, 162: 2330-2336. PMID: 11112159, DOI: 10.1164/ajrccm.162.6.2002086.Peer-Reviewed Original ResearchConceptsDiisocyanate-induced asthmaBiopsy samplesHuman lungHuman airway epithelial cellsBronchoalveolar lavage fluidAirway epithelial cellsEndobronchial biopsy samplesHuman skin biopsy samplesSkin biopsy samplesKeratin 18Epicutaneous exposureLavage fluidSkin proteinsVivo inhalationVivo exposureEpithelial cell proteinsGlucose-regulated proteinEpithelial cellsAsthmaLungExposureVitroVivoKeratinCell proteins
1996
Characterization of carotenoid, vitamin A, and alpha-tocopheral levels in human lung tissue and pulmonary macrophages.
Redlich CA, Grauer JN, Van Bennekum AM, Clever SL, Ponn RB, Blaner WS. Characterization of carotenoid, vitamin A, and alpha-tocopheral levels in human lung tissue and pulmonary macrophages. American Journal Of Respiratory And Critical Care Medicine 1996, 154: 1436-1443. PMID: 8912761, DOI: 10.1164/ajrccm.154.5.8912761.Peer-Reviewed Original ResearchConceptsLung tissue levelsHuman lung tissueBAL cellsLung tissueAlpha-tocopherolTissue levelsSerum levelsHigh-pressure liquid chromatographyBronchoalveolar lavage cellsOpen lung surgeryFresh lung tissueImportant protective effectDietary questionnaireLung surgeryLavage cellsProtective effectPulmonary macrophagesReverse-phase high-pressure liquid chromatographyVitamin AHuman lungDietary levelsPotential markerRetinolSerumPatients
1992
Discovery of Solid Tumor Active Agents Using a Soft-Agar-Colony-Formation Disk-Diffusion-Assay
Corbett T, Valeriote F, Polin L, Panchapor C, Pugh S, White K, Lowichik N, Knight J, Bissery M, Wozniak A, LoRusso P, Biernat L, Polin D, Knight L, Biggar S, Looney D, Demchik L, Jones J, Jones L, Blair S, Palmer K, Essenmacher S, Lisow L, Mattes K, Cavanaugh P, Rake J, Baker L. Discovery of Solid Tumor Active Agents Using a Soft-Agar-Colony-Formation Disk-Diffusion-Assay. Developments In Oncology 1992, 35-87. DOI: 10.1007/978-1-4615-3492-1_3.Peer-Reviewed Original ResearchSolid tumorsAvailable antitumor agentsTransplantable solid tumorsSolid tumor activityLymphocytic leukemiaTumor activityClinical developmentProstate tumorsLack of responsivenessTumorsHuman lungTumor systemsHuman tumorsLeukemiaMiceAntitumor drug discoveryAntitumor agentsAgar coloniesResponsivenessAgentsActive agentsDrug discoveryLungClinicColon
1980
Collagen polymorphism in the lung An immunochemical study of pulmonary fibrosis
Madri J, Furthmayr H. Collagen polymorphism in the lung An immunochemical study of pulmonary fibrosis. Human Pathology 1980, 11: 353-366. PMID: 6997183, DOI: 10.1016/s0046-8177(80)80031-1.Peer-Reviewed Original ResearchConceptsPerivascular localizationLung samplesFibrotic human lungSmooth muscle cell proliferationType IIndirect immunofluorescence techniqueLung type IMuscle cell proliferationType VType IIICapillary basement membranePulmonary fibrosisFibrotic processAlveolar septaType IV collagenImmunofluorescence techniqueHuman lungCell proliferationInterstitiumMarked increaseType IVBasement membraneImmunochemical studiesIrregular localizationIV collagen
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply