2025
Urine Dipstick for the Diagnosis of Urinary Tract Infection in Febrile Infants Aged 2 to 6 Months.
Hunt K, Green R, Sartori L, Aronson P, Chamberlain J, Florin T, Michelson K, Monuteaux M, Chaudhari P, Nigrovic L. Urine Dipstick for the Diagnosis of Urinary Tract Infection in Febrile Infants Aged 2 to 6 Months. 2025, 155 PMID: 40122108, DOI: 10.1542/peds.2024-068671.Peer-Reviewed Original ResearchConceptsDiagnosis of urinary tract infectionUrinary tract infectionUrine WBC countUrine dipstickUrine cultureAged 2 to 6Receiver Operating CharacteristicWhite blood cellsTract infectionsColony-forming unitsUrine white blood cellsWBC countCatheterized urine culturePositive urine dipstickInitial treatment decisionsAccurate diagnostic testCross-sectional studyBacterial uropathogensFebrile infantsLaboratory urinalysisTreatment decisionsDiagnostic testsEmergency departmentUrinalysisUrine
2024
Preclinical development of ATR04-484, an auxotrophic strain of Staphylococcus epidermidis, for the topical treatment of epidermal growth factor receptor (EGFR) inhibitor-induced dermal toxicity.
Whitfill T, Mootien S, Leger R. Preclinical development of ATR04-484, an auxotrophic strain of Staphylococcus epidermidis, for the topical treatment of epidermal growth factor receptor (EGFR) inhibitor-induced dermal toxicity. Journal Of Clinical Oncology 2024, 42: e24074-e24074. DOI: 10.1200/jco.2024.42.16_suppl.e24074.Peer-Reviewed Original ResearchEpidermal growth factor receptorMethicillin resistanceReconstructed human epidermisProphylactic settingS. aureusMRSA growthDermal toxicityColony-forming unitsPatients treated with EGFR inhibitorsTreatment of advanced lungTreatment of epidermal growth factor receptorSignaling pathwayStrains of Staphylococcus epidermidisEpidermal growth factor receptor pathwayQuality of lifeSuppress host defensesLevels of Staphylococcus aureusPig skinHuman cornea-like epitheliumS. aureus growthIrritation potentialCornea-like epitheliumAdherence to therapyInhibit S. aureusEGFR-mediated signaling pathways
2021
Locally delivered adjuvant biofilm‐penetrating antibiotics rescue impaired endochondral fracture healing caused by MRSA infection
Cahill SV, Kwon H, Back J, Lee I, Lee S, Alder KD, Hao Z, Yu KE, Dussik CM, Kyriakides T, Lee F. Locally delivered adjuvant biofilm‐penetrating antibiotics rescue impaired endochondral fracture healing caused by MRSA infection. Journal Of Orthopaedic Research® 2021, 39: 402-414. PMID: 33336805, DOI: 10.1002/jor.24965.Peer-Reviewed Original ResearchConceptsHigh-dose rifampinFracture healingMRSA infectionMethicillin-resistant Staphylococcus aureus osteomyelitisColony-forming unitsTissue bacterial loadStaphylococcus aureus osteomyelitisReactive bone formationRadiographic union scaleEndochondral fracture healingBacterial CFU countsPoor callus formationSoft callus formationTibia scoresRifampin therapyDevastating complicationMRSA colonizationClinical efficacyInfected fracturesTibial radiographsTreatment responseMurine modelIntramedullary pinOpen fracturesO stainBacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol
Lu M, Wang S, Wang T, Hu S, Bhayana B, Ishii M, Kong Y, Cai Y, Dai T, Cui W, Wu M. Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Science Translational Medicine 2021, 13 PMID: 33408183, DOI: 10.1126/scitranslmed.aba3571.Peer-Reviewed Original ResearchConceptsPhototoxic reactionsMammalian cellsMultidrug-resistant bacterial infectionsSkin wound infectionThird-degree burn woundsAdverse eventsBacterial colony-forming unitsWound infectionCombined therapyAntibiotic susceptibilityMDR bacteriaBacterial infectionsBurn woundsSingle treatmentColony-forming unitsBlue lightArray of bacteriaInfectionWound healingHost DNABacterial resistanceMature biofilmsOxygen speciesSuccessive passagesTreatment
2020
1572. Combination Cefuroxime and Sulopenem is active in vitro against Mycobacterium abscessus
Dousa K, Nguyen D, Kurz S, Taracila M, Bethel C, Bonomo R. 1572. Combination Cefuroxime and Sulopenem is active in vitro against Mycobacterium abscessus. Open Forum Infectious Diseases 2020, 7: s785-s785. PMCID: PMC7778327, DOI: 10.1093/ofid/ofaa439.1752.Peer-Reviewed Original ResearchQualified Infectious Disease ProductFood and Drug AdministrationMab infectionClinical isolatesColony-forming unitsCell wall synthesis proteinsMycobacterium abscessusB-lactamOral step-down therapyNontuberculous mycobacteriaStep-down therapyUS Food and Drug AdministrationB-lactam antibioticsVisible bacterial growthMiddlebrook 7H9 brothCharacterized isolatesMIC distributionSynthesis proteinsClinical strainsOral formulationMAB isolatesClinical trialsActivity in vitroDrug AdministrationBacterial growth1642. A Novel β-lactamase Inhibitor (Durlobactam, DUR) and β-Lactams Enhance Susceptibility Against Multidrug-Resistant (MDR) Mycobacterium abscessus (Mab)
Dousa K, Kurz S, Bethel C, Miller A, Bonomo R. 1642. A Novel β-lactamase Inhibitor (Durlobactam, DUR) and β-Lactams Enhance Susceptibility Against Multidrug-Resistant (MDR) Mycobacterium abscessus (Mab). Open Forum Infectious Diseases 2020, 7: s810-s811. PMCID: PMC7777676, DOI: 10.1093/ofid/ofaa439.1822.Peer-Reviewed Original ResearchMinimum inhibitory concentrationB-lactamAmbler class AB-lactamase inhibitorsStructural lung diseaseB-lactam antibioticsImprove treatment outcomesTargeting multiple stepsMiddlebrook 7H9 brothVisible bacterial growthB-lactamaseDurlobactamBlaMabClinical isolatesColony-forming unitsMechanism of actionLung infectionCell wall structureRestore susceptibilityClinical strainsHydrolyzed penicillinsNontuberculous mycobacteriaLung diseaseMAB isolatesTreatment outcomes
2019
1385. Mechanism-Based, In Vitro Inhibition of Mycobacterium abscessus: Assessing β-Lactam Therapy
Dousa K, Kurz S, Bethel C, Barnes M, Taracilla M, Selvaraju S, Jacobs M, Kreiswirth B, Kasperbauer S, Daley C, Bonomo R. 1385. Mechanism-Based, In Vitro Inhibition of Mycobacterium abscessus: Assessing β-Lactam Therapy. Open Forum Infectious Diseases 2019, 6: s503-s503. PMCID: PMC6809419, DOI: 10.1093/ofid/ofz360.1249.Peer-Reviewed Original ResearchB-lactamaseColony-forming unitsIn vitro susceptibility testingB-lactamase inhibitorsTherapeutically achievable concentrationsMab infectionRescue regimenMiddlebrook 7H9 brothVisible bacterial growthSusceptibility testingClinical isolatesImipenemBlaMabTreated patientsRelebactamAvibactamNontuberculous mycobacteriaB-lactamM. abscessusMAB isolatesTest agentsIn vitro inhibitionMAb complexesMAbMICInvestigation of the role of typhoid toxin in acute typhoid fever in a human challenge model
Gibani MM, Jones E, Barton A, Jin C, Meek J, Camara S, Galal U, Heinz E, Rosenberg-Hasson Y, Obermoser G, Jones C, Campbell D, Black C, Thomaides-Brears H, Darlow C, Dold C, Silva-Reyes L, Blackwell L, Lara-Tejero M, Jiao X, Stack G, Blohmke CJ, Hill J, Angus B, Dougan G, Galán J, Pollard AJ. Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model. Nature Medicine 2019, 25: 1082-1088. PMID: 31270506, PMCID: PMC6892374, DOI: 10.1038/s41591-019-0505-4.Peer-Reviewed Original ResearchConceptsHuman challenge modelTyphoid toxinChallenge modelTyphoid feverAcute typhoid feverDuration of bacteremiaFurther clinical dataS. typhiAcute infectionOral challengeClinical syndromeChronic infectionBacterial carriageClinical dataSevere diseaseTN groupFever symptomsHealthy volunteersDisease pathogenesisTyphoid infectionTyphoid diseaseColony-forming unitsHost-restricted pathogenInfectionSalmonella typhi
2016
Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction
Sanada C, Xavier-Ferrucio J, Lu YC, Min E, Zhang PX, Zou S, Kang E, Zhang M, Zerafati G, Gallagher PG, Krause DS. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 2016, 128: 923-933. PMID: 27268089, PMCID: PMC4990855, DOI: 10.1182/blood-2016-01-693705.Peer-Reviewed Original ResearchConceptsMegakaryocyte/erythroid progenitorsComparative expression analysisNovel enrichment strategyMegakaryocyte-erythroid progenitorsPurification strategySingle-cell levelShort hairpin RNAFate decisionsE lineageNovel purification strategyLineage fateLineage commitmentGranulocyte colony-stimulating factor-mobilized peripheral bloodMK lineageExpression analysisE progenitorsErythroid lineageFactor-mobilized peripheral bloodDifferential expressionES cellsErythroid progenitorsMYB knockdownHairpin RNALineagesColony-forming units
2015
Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells
Chow P, Hamid Z, Chan K, Inayat-Hussain S, Rajab N. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells. Toxicology And Applied Pharmacology 2015, 284: 8-15. PMID: 25645895, DOI: 10.1016/j.taap.2015.01.016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, LyApoptosisBenzoquinonesBiomarkersCD11b AntigenCell LineageCell ProliferationCells, CulturedColony-Forming Units AssayDose-Response Relationship, DrugFlow CytometryHematopoietic Stem CellsImmunophenotypingLeukocyte Common AntigensMaleMembrane ProteinsMiceMice, Inbred ICRPhenotypeStem Cell NicheConceptsHematopoietic progenitor cellsHematopoietic stem cellsColony-forming unitsSingle-lineage progenitorsBenzene exposureMouse hematopoietic progenitor cellsProgenitor cellsBenzene-induced hematotoxicityMouse BM cellsColony growthMouse bone marrow cellsBone marrow cellsBQ exposureBM cellsLymphoid populationsCellular surface antigensSurface antigenConcentration-dependent cytotoxicityBenzene metabolitesCFU-GMFlow cytometryMarrow cellsCFU-GEMMHematopoietic stemApoptotic cells
2008
Cellular Mechanism of Decreased Bone in Brtl Mouse Model of OI: Imbalance of Decreased Osteoblast Function and Increased Osteoclasts and Their Precursors*
Uveges TE, Collin‐Osdoby P, Cabral WA, Ledgard F, Goldberg L, Bergwitz C, Forlino A, Osdoby P, Gronowicz GA, Marini JC. Cellular Mechanism of Decreased Bone in Brtl Mouse Model of OI: Imbalance of Decreased Osteoblast Function and Increased Osteoclasts and Their Precursors*. Journal Of Bone And Mineral Research 2008, 23: 1983-1994. PMID: 18684089, PMCID: PMC2686922, DOI: 10.1359/jbmr.080804.Peer-Reviewed Original ResearchConceptsColony-forming unitsRANKL/OPG ratioOsteogenesis imperfectaWildtype valuesCompared to wildtype miceSevere osteogenesis imperfectaReal-time RT-PCRMouse model of OIIncreases osteoclast precursorsBone-resorbing osteoclastsOI therapyKnock-in modelIncreased osteoclastsOsteoclast increaseMarrow culturesWildtype miceModel of OITRACP stainingOsteoblast functionOsteoclast precursorsCellular mechanismsBrtl miceOsteoclastsRT-PCRTRACP(+
2004
Myeloproliferative Disease in Mice with Reduced Presenilin Gene Dosage: Effect of γ-Secretase Blockage †
Qyang Y, Chambers SM, Wang P, Xia X, Chen X, Goodell MA, Zheng H. Myeloproliferative Disease in Mice with Reduced Presenilin Gene Dosage: Effect of γ-Secretase Blockage †. Biochemistry 2004, 43: 5352-5359. PMID: 15122901, DOI: 10.1021/bi049826u.Peer-Reviewed Original ResearchMeSH KeywordsAmyloid Precursor Protein SecretasesAnimalsAspartic Acid EndopeptidasesCell LineageColony-Forming Units AssayEndopeptidasesFemaleGene DosageGranulocytesHematopoiesisLeukocyte CountMacrophagesMaleMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutMyeloproliferative DisordersPresenilin-1Presenilin-2Protease InhibitorsConceptsGamma-secretase activityDisease interventionWild-type splenocytesAlzheimer's disease interventionsAmyloid precursor proteinGranulocyte-macrophage colony-forming unitsGamma-secretase inhibitorsGamma-secretase cleavageGranulocyte infiltrationPotential therapyMyeloproliferative diseaseB lymphocytesBone marrowPS inactivationHematopoietic stem cellsColony-forming unitsGranulocytic cells
2003
Macrophage activation and Fcγ receptor-mediated signaling do not require expression of the SLP-76 and SLP-65 adaptors
Nichols KE, Haines K, Myung PS, Newbrough S, Myers E, Jumaa H, Shedlock DJ, Shen H, Koretzky GA. Macrophage activation and Fcγ receptor-mediated signaling do not require expression of the SLP-76 and SLP-65 adaptors. Journal Of Leukocyte Biology 2003, 75: 541-552. PMID: 14694181, DOI: 10.1189/jlb.0703312.Peer-Reviewed Original ResearchConceptsBone marrow-derived macrophagesSLP-76SLP-65Extracellular signaling-regulated kinase 1Sheep red blood cellsInitial host defenseLow-dose infectionNumber of liverWild-type miceSrc homology 2Functional eventsMarrow-derived macrophagesTotal body burdenReceptor-mediated signalingReceptor-induced activationRed blood cellsLeukocyte-specific phosphoproteinReactive oxygen intermediatesT lymphocytesMast cellsFc receptorsMacrophage activationListeria monocytogenesHost defenseColony-forming units
1992
An experimental model for subclinical edema disease (Escherichia coli enterotoxemia) manifest as vascular necrosis in pigs.
Kausche F, Dean E, Arp L, Samuel J, Moon H. An experimental model for subclinical edema disease (Escherichia coli enterotoxemia) manifest as vascular necrosis in pigs. American Journal Of Veterinary Research 1992, 53: 281-7. PMID: 1595951, DOI: 10.2460/ajvr.1992.53.3.281.Peer-Reviewed Original ResearchConceptsEdema diseaseLesions of edema diseaseStrains of E coliWeanling pigsControl pigsNecropsy examinationClinical signsInoculationPigsNecrosis of myocytesNonpathogenic strainsTunica media of small arteriesVascular necrosisColony-forming unitsStrains of Escherichia coliMedia of small arteriesE coli strainsDaysE coliSegmental necrosisIleum
1989
The effect of recombinant erythropoietin on intracellular free calcium in erythropoietin-responsive cells.
Imagawa S, Smith B, Palmer-Crocker R, Bunn H. The effect of recombinant erythropoietin on intracellular free calcium in erythropoietin-responsive cells. Blood 1989, 73: 1452-7. PMID: 2496770, DOI: 10.1182/blood.v73.6.1452.bloodjournal7361452.Peer-Reviewed Original ResearchConceptsIntracellular free calciumFormation of erythroid coloniesCFU-E.Erythroid coloniesFree calciumR-EPOSpleens of mice treated with phenylhydrazineCalcium ionophoreCFU-ERecombinant erythropoietinFluorescent dye indo-1Growth of CFU-EEffect of recombinant erythropoietinDye indo-1Action of EpoEpo-responsive cellsErythropoietin-responsive cellsNonhematopoietic progenitorsColony-forming unitsIndo-1Spleen cellsErythroid cellsMac-1Acute changesColony growth
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply