2024
Endoplasmic reticulum exit sites are segregated for secretion based on cargo size
Saxena S, Foresti O, Liu A, Androulaki S, Pena Rodriguez M, Raote I, Aridor M, Cui B, Malhotra V. Endoplasmic reticulum exit sites are segregated for secretion based on cargo size. Developmental Cell 2024, 59: 2593-2608.e6. PMID: 38991587, PMCID: PMC11813558, DOI: 10.1016/j.devcel.2024.06.009.Peer-Reviewed Original ResearchEndoplasmic reticulum exit sitesProline-rich domainC-terminal proline-rich domainCOPII assemblyExit siteER membraneCargo exportJuxtanuclear regionU2OS cellsCargo moleculesBulky cargoSEC23AOptimal secretionCollagen VIIHuman osteosarcomaProlonged bindingComplex organismsCargoCargo sizeBindingCollagen ICTAGE5TANGO1COPIIERGIC53
2023
Decellularization compromises mechanical and structural properties of the native trachea
Greaney A, Ramachandra A, Yuan Y, Korneva A, Humphrey J, Niklason L. Decellularization compromises mechanical and structural properties of the native trachea. Biomaterials And Biosystems 2023, 9: 100074. PMID: 36967724, PMCID: PMC10036236, DOI: 10.1016/j.bbiosy.2023.100074.Peer-Reviewed Original ResearchMechanical behaviorGraft failureNative tracheaMechanical failureTissue engineering technologyDepletion of proteoglycansAirway narrowingAirway replacementClinical interventionsWestern blotTracheaMajor causeTracheal graftsEngineering technologyHistological stainingTracheal replacementDifferent decellularization protocolsSignificant differencesClinical implantationTissue repairCollagen IStructural deteriorationStructural propertiesDecellularization protocolGreat potential
2020
Polycystin-1 Downregulation Induced Vascular Smooth Muscle Cells Phenotypic Alteration and Extracellular Matrix Remodeling in Thoracic Aortic Dissection
Zhang J, Liu F, He Y, Zhang W, Ma W, Xing J, Wang L. Polycystin-1 Downregulation Induced Vascular Smooth Muscle Cells Phenotypic Alteration and Extracellular Matrix Remodeling in Thoracic Aortic Dissection. Frontiers In Physiology 2020, 11: 548055. PMID: 33071810, PMCID: PMC7541897, DOI: 10.3389/fphys.2020.548055.Peer-Reviewed Original ResearchAortic vascular smooth muscle cellsVascular smooth muscle cellsThoracic aortic dissectionMarkers of vascular smooth muscle cellsPolycystic kidney disease-1Polycystin-1TAD groupProgression of thoracic aortic dissectionAortic dissectionExtracellular matrix remodelingPrimary aortic vascular smooth muscle cellsPhosphorylation of mTORCollagen IIIS6KExpression of polycystin-1Extracellular matrixControl groupMatrix metalloproteinase (MMP)-2Phenotypic alterationsCell phenotypic alterationsSmooth muscle cellsCollagen IExpression of mRNAMetalloproteinase (MMP)-2Synthetic markers
2019
Breast Cancer Cells Transition from Mesenchymal to Amoeboid Migration in Tunable Three-Dimensional Silk–Collagen Hydrogels
Khoo AS, Valentin TM, Leggett SE, Bhaskar D, Bye EM, Benmelech S, Ip BC, Wong IY. Breast Cancer Cells Transition from Mesenchymal to Amoeboid Migration in Tunable Three-Dimensional Silk–Collagen Hydrogels. ACS Biomaterials Science & Engineering 2019, 5: 4341-4354. PMID: 31517039, PMCID: PMC6739834, DOI: 10.1021/acsbiomaterials.9b00519.Peer-Reviewed Original ResearchCell-matrix adhesionStrong cell-matrix adhesionMesenchymal morphologyCancer cell transitionCancer cellsCollagen I concentrationAmoeboid morphologyMetastatic breast cancer cellsCancer cell migrationCytoskeletal functionECM protein concentrationMigration phenotypeAmoeboid migrationCell transitionMesenchymal migrationBiochemical cuesBreast cancer cellsCell migrationExtracellular matrixRounded morphologyBiphasic dependencePlate formatCollagen ICellsBiomaterial platform
2013
Biomechanical forces differentially regulate signaling in the cortical collecting duct (CCD)
Carrisoza R, Else C, Flores D, Lee H, Lee F, Rohatgi R, Satlin L. Biomechanical forces differentially regulate signaling in the cortical collecting duct (CCD). The FASEB Journal 2013, 27: 1148.10-1148.10. DOI: 10.1096/fasebj.27.1_supplement.1148.10.Peer-Reviewed Original Research
2006
Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury
Ma J, Weisberg A, Griffin JP, Vaughan DE, Fogo AB, Brown NJ. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney International 2006, 69: 1064-1072. PMID: 16528256, DOI: 10.1038/sj.ki.5000201.Peer-Reviewed Original ResearchMeSH KeywordsAlbuminuriaAldosteroneAnimalsBlood PressureChemokine CCL2CollagenFibronectinsGene ExpressionGlomerulonephritisHemodynamicsKidney GlomerulusMacrophagesMaleMiceMice, Inbred C57BLMice, Inbred StrainsMyocardiumNephrectomyOsteopontinPlasminogen Activator Inhibitor 1RNA, MessengerSialoglycoproteinsSodiumConceptsMonocyte chemoattractant protein-1Plasminogen activator inhibitor-1WT miceGlomerular injuryPlasminogen activator inhibitor-1 deficiencyCollagen IIIMRNA expressionPAI-1-deficient miceRenal collagen contentRenal osteopontin expressionSodium/potassium ratioUrine albumin excretionSystolic blood pressureRenal mRNA expressionChemoattractant protein-1Activator inhibitor-1Collagen IGrowth factor betaAlbumin excretionSodium excretionBlood pressureMesangial expansionRenal expressionCardiac injuryUrine volume
2005
TOPGAL Mice Show That the Canonical Wnt Signaling Pathway Is Active During Bone Development and Growth and Is Activated by Mechanical Loading In Vitro*
Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ. TOPGAL Mice Show That the Canonical Wnt Signaling Pathway Is Active During Bone Development and Growth and Is Activated by Mechanical Loading In Vitro*. Journal Of Bone And Mineral Research 2005, 20: 1103-1113. PMID: 15940363, DOI: 10.1359/jbmr.050210.Peer-Reviewed Original ResearchConceptsTOPGAL miceBone developmentCanonical WntMature skeletonNeonatal bone developmentCanonical Wnt Signaling PathwayExpression of WntActivation of WntWnt Signaling PathwayX-gal stainingCalvarial cellsT-cell factorBone massCanonical Wnt activityCanonical Wnt signalingPrimary calvarial cell culturesMiceAnabolic activityPrimary calvarial cellsRT-PCRCell factorCultured calvarial cellsNeonatal skeletonCollagen ISignaling pathways
2003
Fibronectin blocks p38 and jnk activation by cyclic strain in Caco-2 cells
Zhang J, Li W, Sumpio BE, Basson MD. Fibronectin blocks p38 and jnk activation by cyclic strain in Caco-2 cells. Biochemical And Biophysical Research Communications 2003, 306: 746-749. PMID: 12810082, DOI: 10.1016/s0006-291x(03)01044-1.Peer-Reviewed Original ResearchConceptsIntestinal epithelial responsesIntestinal epithelial proliferationCaco-2 intestinal epithelial cellsIntestinal epithelial cellsHuman Caco-2 intestinal epithelial cellsCaco-2 cellsPlasma fibronectinInfectious conditionsEpithelial responseFibronectin levelsEpithelial proliferationIntestinal epitheliumEpithelial cellsRepetitive forcesBasement membraneCollagen ICollagen IVIntracellular signalingP38JNK activationActivationCellsStrain activationTissueFibronectin
1996
Regulation of human colonic cell line proliferation and phenotype by sodium butyrate
Basson M, Turowski G, Rashid Z, Hong F, Madri J. Regulation of human colonic cell line proliferation and phenotype by sodium butyrate. Digestive Diseases And Sciences 1996, 41: 1986-1993. PMID: 8888712, DOI: 10.1007/bf02093601.Peer-Reviewed Original ResearchConceptsBrush border enzyme activitiesSerial cell countsCell line proliferationHuman colonic cellsColonic butyrateApparent protective actionColon carcinogenesisMalignant behaviorCell countButyrate effectMucosal differentiationColonic cellsProtective actionSodium butyrateCaco-2Surface expressionCollagen ICollagen IVDietary fiberProliferationRelevant concentrationsCarcinogenesisCultured cellsMotilityMatrix proteins
1995
Laser‐induced fluorescence: III. Quantitative analysis of atherosclerotic plaque content
Yan W, Perk M, Chagpar A, Wen Y, Stratoff S, Schneider W, Jugdutt B, Tulip J, Lucas A. Laser‐induced fluorescence: III. Quantitative analysis of atherosclerotic plaque content. Lasers In Surgery And Medicine 1995, 16: 164-178. PMID: 7769961, DOI: 10.1002/lsm.1900160206.Peer-Reviewed Original Research
1993
Effect of transforming growth factor-β on extracellular matrix productionby cultured rat mesangial cells
ISHIMURA E, MORII H, STERZEL R, KASHGARIAN M. Effect of transforming growth factor-β on extracellular matrix productionby cultured rat mesangial cells. 日本腎臓学会誌 1993, 35: 311-320. PMID: 8341006, DOI: 10.14842/jpnjnephrol1959.35.311.Peer-Reviewed Original ResearchConceptsNorthern blottingCultured rat mesangial cellsRat mesangial cellsCollagen IExtracellular matrix constituentsMesangial cellsGrowth factorEnzyme-linked immunoadsorbent assayGene expressionProtein productionSingle growth factorECM constituentsProtein synthesisGenetic expressionMatrix componentsLamininExpressionGlomerular remodelingECM accumulationTGF-beta administrationBlottingMRNA expressionMatrix constituentsCellsGlomerular injury
1992
Independent modulation of enterocyte migration and proliferation by growth factors, matrix proteins, and pharmacologic agents in an in vitro model of mucosal healing.
Basson M, Modlin I, Flynn S, Jena B, Madri J. Independent modulation of enterocyte migration and proliferation by growth factors, matrix proteins, and pharmacologic agents in an in vitro model of mucosal healing. Surgery 1992, 112: 299-307; discussion 307-8. PMID: 1353641.Peer-Reviewed Original ResearchConceptsMucosal healingPharmacologic agentsGrowth factorEGF-stimulated proliferationCaco-2 enterocytesHuman Caco-2 enterocytesInhibited basalAlpha 2 integrin subunitMatrix proteinsEnterocyte migrationCollagen IInhibitor genisteinIntegrin subunitsHealingIndomethacinProliferationTyrosine kinaseEGFLamininBasalGenisteinAltered organizationIndependent modulationHuman enterocyte (Caco-2) migration is modulated in vitro by extracellular matrix composition and epidermal growth factor.
Basson M, Modlin I, Madri J. Human enterocyte (Caco-2) migration is modulated in vitro by extracellular matrix composition and epidermal growth factor. Journal Of Clinical Investigation 1992, 90: 15-23. PMID: 1634605, PMCID: PMC443057, DOI: 10.1172/jci115828.Peer-Reviewed Original ResearchConceptsEpidermal growth factorCaco-2 cellsGrowth factorEGF treatmentEnterocyte migrationHuman colonic cell lineColonic cell lineAlpha 2 subunitIntegrin surface expressionEGF-treated cellsAlpha integrin subunitsCollagen I.Functional antibodiesCell surface receptorsCollagen type IIntegrin expressionAlpha 2Basal migrationCell proliferationSurface expressionCollagen IExtracellular matrix compositionCell linesIntegrin subunitsSurface receptorsExtracellular matrix protein: gene expression and synthesis in cultured rat mesangial cells
ISHIMURA E, STERZEL R, MORII H, KASHGARIAN M. Extracellular matrix protein: gene expression and synthesis in cultured rat mesangial cells. 日本腎臓学会誌 1992, 34: 9-17. PMID: 1593802, DOI: 10.14842/jpnjnephrol1959.34.9.Peer-Reviewed Original ResearchConceptsGene expressionProtein synthesisExtracellular matrixNorthern blottingBasement membrane matrix componentsFetal calf serumCollagen IMesangial cellsMRNA expressionDNA amountSynthesis of ECMCellular confluenceECM productionCultured rat mesangial cellsMatrix componentsRat mesangial cellsExpressionLamininBlottingCellsCalf serumImmunocytochemical studyPrevious immunocytochemical studiesCIIIMRNA
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply