2022
Rational engineering of industrial S. cerevisiae: towards xylitol production from sugarcane straw
de Mello FDSB, Maneira C, Suarez FUL, Nagamatsu S, Vargas B, Vieira C, Secches T, Coradini ALV, de Carvalho Silvello M, Goldbeck R, Pereira GAG, Teixeira GS. Rational engineering of industrial S. cerevisiae: towards xylitol production from sugarcane straw. Journal Of Genetic Engineering And Biotechnology 2022, 20: 80. PMID: 35612634, PMCID: PMC9133290, DOI: 10.1186/s43141-022-00359-8.Peer-Reviewed Original ResearchXylose reductaseS. cerevisiaeBrazilian bioethanol industryIndustrial S. cerevisiaeMajor yeastGenomic integrationNucleotide sequenceCRISPR editingGenetic engineeringInhibitor toleranceXylitol productionIndustrial strainsRobust chassisHigh economic valueNADPH availabilityNADPH cofactorAvailable cofactorsRational engineeringRedox environmentGenetic backgroundXylitol titerHemicellulosic materialLaboratory strainsFermentation performanceCerevisiaeA mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6
Schmidt JM, Yang R, Kumar A, Hunker O, Seebacher J, Bleichert F. A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6. Nature Communications 2022, 13: 1059. PMID: 35217664, PMCID: PMC8881611, DOI: 10.1038/s41467-022-28695-w.Peer-Reviewed Original ResearchConceptsOrigin recognition complexS. cerevisiaeCyclin-dependent kinase phosphorylationMcm2-7 loadingN-terminal domainCryo-electron microscopyCDK phosphorylationRecognition complexDNA replicationReplication originsÅ resolutionKinase phosphorylationMechanism of originCdc6Coordinated actionCerevisiaePhosphorylationDNAInhibitory signalsStructural detailsSite regulationRecruitmentOrc6AssemblyCdt1
2018
The Inner Nuclear Membrane Takes On Lipid Metabolism
Merta H, Bahmanyar S. The Inner Nuclear Membrane Takes On Lipid Metabolism. Developmental Cell 2018, 47: 397-399. PMID: 30458132, DOI: 10.1016/j.devcel.2018.11.005.Peer-Reviewed Original Research
2009
Characterization of Novel PtdIns(4,5)P2 Effector Domains
Moravcevic K, Lemmon M. Characterization of Novel PtdIns(4,5)P2 Effector Domains. The FASEB Journal 2009, 23: 873.6-873.6. DOI: 10.1096/fasebj.23.1_supplement.873.6.Peer-Reviewed Original ResearchEffector domainPrevious genome-wide studiesPhosphoinositide-binding proteinsKey cellular processesGenome-wide studiesDifferent protein domainsEffector proteinsCellular functionsCellular processesProtein domainsBiochemical approachesS. cerevisiaeBiochemical basisCellular activitiesCandidate novelDirect interactionProteinNew insightsDomainCerevisiaeMajor rolePhosphoinositideBiologyEffectorsDiversity
2008
A comprehensive strategy enabling high-resolution functional analysis of the yeast genome
Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nature Methods 2008, 5: 711-718. PMID: 18622397, PMCID: PMC2756093, DOI: 10.1038/nmeth.1234.Peer-Reviewed Original ResearchConceptsGenetic interaction studiesEssential yeast genesChemical genetic screenHigh-resolution functional analysisGenetic screenYeast genesYeast genomeHypomorphic alleleSaccharomyces cerevisiaeFunctional analysisStrain collectionGrowth competitionInteraction studiesGenomeCerevisiaeGenesAllelesScreen
2007
Divergence of Transcription Factor Binding Sites Across Related Yeast Species
Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J, Seringhaus MR, Wang LY, Gerstein M, Snyder M. Divergence of Transcription Factor Binding Sites Across Related Yeast Species. Science 2007, 317: 815-819. PMID: 17690298, DOI: 10.1126/science.1140748.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesCandida albicansChromatin ImmunoprecipitationDNA-Binding ProteinsEvolution, MolecularFungal ProteinsGene Expression Regulation, FungalGene Regulatory NetworksGenes, FungalOligonucleotide Array Sequence AnalysisRegulatory Sequences, Nucleic AcidSaccharomycesSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription FactorsConceptsS. mikataeGene regulationS. bayanusRelated yeast speciesYeast Saccharomyces cerevisiaeTranscription factor bindingTranscription Factor Binding SitesDNA microarray analysisOrthologous genesChromatin immunoprecipitationRelated speciesPhenotypic diversityTranscription factorsFactor bindingSaccharomyces cerevisiaeS. cerevisiaeYeast speciesMolecular basisMicroarray analysisInterspecies variationSte12SpeciesBinding sitesCerevisiaeBayanus
2006
Population structure and gene evolution in Saccharomyces cerevisiae
Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW. Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Research 2006, 6: 702-715. PMID: 16879422, DOI: 10.1111/j.1567-1364.2006.00059.x.Peer-Reviewed Original ResearchConceptsPopulation genetic variationPopulation structureS. cerevisiaeDistinct population structureSaccharomyces sensu strictoSulfur-based fungicidesSulfite exporterGene evolutionGene treesGene SSU1Historical selectionTranscription factorsHigh polymorphismNatural isolatesProtein productsCerevisiaeSequence analysisSSU1Oak forestsGreater polymorphismSensu strictoWine yeastSequence studiesFZF1Expression levels
2003
Role of duplicate genes in genetic robustness against null mutations
Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH. Role of duplicate genes in genetic robustness against null mutations. Nature 2003, 421: 63-66. PMID: 12511954, DOI: 10.1038/nature01198.Peer-Reviewed Original ResearchConceptsDuplicate genesGenetic robustnessNull mutationSevere fitness effectsGenome-wide evaluationAlternative metabolic pathwaysFitness effectsLoss of functionSequence similarityRegulatory networksDeletion mutantsS. cerevisiaeGenesMetabolic pathwaysDuplicate copiesGene deletionFunctional compensationFitness dataCopiesMutationsMutantsCerevisiaeRelative importanceOrganismsSecond mechanism
2002
The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis
Kamińska J, Grabińska K, Kwapisz M, Sikora J, Smagowicz W, Palamarczyk G, Żołądek T, Boguta M. The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Research 2002, 2: 31-37. DOI: 10.1016/s1567-1356(01)00059-9.Peer-Reviewed Original ResearchIsoprenoid pathwayIsoprenoid biosynthetic pathwayCellular tRNA levelsTRNA synthesisTRNA biosynthesisTRNA levelsSaccharomyces cerevisiaeBiosynthetic pathwayComplex regulationIsopentenyltransferaseProtein levelsMutantsErgosterol contentBiosynthesisPathwayIsopentenylationCerevisiaeSaccharomycesYeastTranscriptsRegulationExpressionDirect effectCellsThe isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis
Kamińska J, Grabińska K, Kwapisz M, Sikora J, Smagowicz W, Palamarczyk G, Żołądek T, Boguta M. The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Research 2002, 2: 31-37. PMID: 12702319, DOI: 10.1111/j.1567-1364.2002.tb00066.x.Peer-Reviewed Original ResearchConceptsIsoprenoid pathwayIsoprenoid biosynthetic pathwayCellular tRNA levelsTRNA synthesisTRNA biosynthesisTRNA levelsSaccharomyces cerevisiaeBiosynthetic pathwayComplex regulationIsopentenyltransferaseProtein levelsMutantsErgosterol contentBiosynthesisPathwayIsopentenylationCerevisiaeSaccharomycesYeastTranscriptsRegulationExpressionDirect effectCells
1999
MITOP: database for mitochondria-related proteins, genes and diseases
Scharfe C, Zaccaria P, Hoertnagel K, Jaksch M, Klopstock T, Lill R, Prokisch H, Gerbitz K, Mewes HW, Meitinger T. MITOP: database for mitochondria-related proteins, genes and diseases. Nucleic Acids Research 1999, 27: 153-155. PMID: 9847163, PMCID: PMC148118, DOI: 10.1093/nar/27.1.153.Peer-Reviewed Original ResearchConceptsGene catalogProtein entriesMitochondrial-encoded genesMitochondria-related proteinsCaenorhabditis elegansProtein catalogueEST hitsMitochondrial processesNeurospora crassaFASTA searchInterspecies homologyMus musculusReference sequenceHomologyGenesProteinFacilitate investigationProtein abnormalitiesSequenceElegansCrassaCerevisiaeMusculusSpeciesPathway
1998
C‐terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition
Lenhard B, Prætorius-Ibba M, Filipic S, Söll D, Weygand-Durasevic I. C‐terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition. FEBS Letters 1998, 439: 235-240. PMID: 9845329, DOI: 10.1016/s0014-5793(98)01376-3.Peer-Reviewed Original ResearchRad53 FHA Domain Associated with Phosphorylated Rad9 in the DNA Damage Checkpoint
Sun Z, Hsiao J, Fay D, Stern D. Rad53 FHA Domain Associated with Phosphorylated Rad9 in the DNA Damage Checkpoint. Science 1998, 281: 272-274. PMID: 9657725, DOI: 10.1126/science.281.5374.272.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCell Cycle ProteinsCheckpoint Kinase 2DNA DamageDNA ReplicationFungal ProteinsG2 PhaseHydroxyureaMethyl MethanesulfonateMitosisMutationOligopeptidesPeptidesPhosphorylationProtein KinasesProtein Serine-Threonine KinasesSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription, GeneticConceptsRad53 phosphorylationRad53 protein kinaseDNA damage signalsDNA damage checkpointProtein-binding domainsCell cycle phase arrestRNR3 transcriptionRad9 proteinFHA domainDamage checkpointG2/M cell cycle phase arrestCell divisionProtein kinaseSaccharomyces cerevisiaeDamage signalsRad9DNA damageRad53Phase arrestPhosphorylationCheckpointDomainCerevisiaeTranscriptionKinase
1997
Polyprenol formation in the yeast Saccharomyces cerevisiae: effect of farnesyl diphosphate synthase overexpression
Szkopińska A, Grabińska K, Delourme D, Karst F, Rytka J, Palamarczyk G. Polyprenol formation in the yeast Saccharomyces cerevisiae: effect of farnesyl diphosphate synthase overexpression. Journal Of Lipid Research 1997, 38: 962-968. PMID: 9186913, DOI: 10.1016/s0022-2275(20)37220-5.Peer-Reviewed Original ResearchConceptsWild-type yeastType yeastSaccharomyces cerevisiaeYeast Saccharomyces cerevisiaeEffects of farnesylSynthesis of dolicholSame genetic backgroundHand overexpressionErg mutantsFPP synthaseSqualene synthase activitySynthesis of polyprenolsExogenous FPPMevalonate pathwayMutantsGenetic backgroundYeastOverexpressionSynthase overexpressionSynthase activityCerevisiaeFarnesylGenesSynthasePolyprenols
1994
An RNA polymerase II holoenzyme responsive to activators
Koleske A, Young R. An RNA polymerase II holoenzyme responsive to activators. Nature 1994, 368: 466-469. PMID: 8133894, DOI: 10.1038/368466a0.Peer-Reviewed Original ResearchConceptsRNA polymerase IIGeneral transcription factorsRNA polymerase II holoenzymePolymerase IITranscription factorsPromoter DNAMulti-component complexesGAL4-VP16Initiation factorsRegulatory proteinsHoloenzymeProteinDNAOrdered fashionCerevisiaeTranscriptionVivoPromoterActivatorAssemblyEquimolar amountsComplexes
1990
In vivo degradation of a transcriptional regulator: The yeast α2 repressor
Hochstrasser M, Varshavsky A. In vivo degradation of a transcriptional regulator: The yeast α2 repressor. Cell 1990, 61: 697-708. PMID: 2111732, DOI: 10.1016/0092-8674(90)90481-s.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid Sequencebeta-GalactosidaseFungal ProteinsGene Expression Regulation, FungalHalf-LifeMacromolecular SubstancesMolecular Sequence DataMutationProtein EngineeringProtein Processing, Post-TranslationalRecombinant Fusion ProteinsRepressor ProteinsSaccharomyces cerevisiaeTranscription FactorsConceptsYeast S. cerevisiaeTranscriptional regulatorsHeteromeric proteinsAlpha 2S. cerevisiaeDegradation signalRegulatory proteinsOligomeric proteinsSame proteinStructural domainsProteinMultiple functionsSubunitsRepressorDistinct mechanismsVivo concentrationsAdditional defectsCerevisiaeMutantsNovel typeDegradationRegulatorPathwayMetabolic instabilityVivo degradation
1988
Genomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae
Kolman C, Snyder M, Söll D. Genomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae. Genomics 1988, 3: 201-206. PMID: 3066745, DOI: 10.1016/0888-7543(88)90080-8.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetase genesContour-clamped homogeneous electric field gel electrophoresisHomogeneous electric field gel electrophoresisSynthetase geneGenomic organizationSmall multigene familyDNA gel blotsAmino acidsField gel electrophoresisGel electrophoresisTRNA genesChromosome assignmentMultigene familyGel blotsGene sequencesS. cerevisiaeChromosomal DNATRNAGenesSaccharomycesAspartic acidElectrophoresisGenomeCerevisiaeFamily
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply