2024
Yeast 26S proteasome nuclear import is coupled to nucleus-specific degradation of the karyopherin adaptor protein Sts1
Breckel C, Johnson Z, Hickey C, Hochstrasser M. Yeast 26S proteasome nuclear import is coupled to nucleus-specific degradation of the karyopherin adaptor protein Sts1. Scientific Reports 2024, 14: 2048. PMID: 38267508, PMCID: PMC10808114, DOI: 10.1038/s41598-024-52352-5.Peer-Reviewed Original ResearchConceptsProteasome storage granulesNuclear importUbiquitin-independent proteasomal degradationProteasome degradation in vitroYeast Saccharomyces cerevisiaeProlonged glucose starvationNuclear import factorsUbiquitin-proteasome systemProteasome interactionGlucose starvationKaryopherin proteinsProteasomal degradationNuclear transportCellular homeostasisDegradation in vivoSTS1KaryopherinProtein degradationProteasomeDegradation in vitroGlucose refeedingStorage granulesProteinEukaryotesRanGTPElectrophysiology of fluoride channels in the yeasts Saccharomyces cerevisiae and Candida albicans
Rivetta A, Slayman C. Electrophysiology of fluoride channels in the yeasts Saccharomyces cerevisiae and Candida albicans. Methods In Enzymology 2024, 696: 3-24. PMID: 38658085, DOI: 10.1016/bs.mie.2024.01.005.Peer-Reviewed Original ResearchYeast Saccharomyces cerevisiaeOpportunistic human pathogenFree-living microorganismsSingle cellsPlasma membrane of single cellsYeast spheroplastsSaccharomyces cerevisiaeRegulation of moleculesCandida albicansHuman pathogensPlasma membraneCell wallExtracellular environmentMembrane of single cellsPatch-clamp techniqueOsmotic strengthYeastSpheroplastsCandidaFluoride channelsSmall cell volumeToxic moleculesCell membraneDiverse moleculesCell populations
2019
Genetic and Biochemical Analyses of Yeast ESCRT
Banjade S, Tang S, Emr S. Genetic and Biochemical Analyses of Yeast ESCRT. Methods In Molecular Biology 2019, 1998: 105-116. PMID: 31250297, DOI: 10.1007/978-1-4939-9492-2_8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid Transport Systems, BasicEndocytosisEndosomal Sorting Complexes Required for TransportGreen Fluorescent ProteinsMembrane LipidsMembranes, ArtificialMicroscopy, ElectronMicroscopy, FluorescenceMultivesicular BodiesMutationProtein MultimerizationRecombinant ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsVacuolesConceptsMultivesicular bodiesBudding yeast Saccharomyces cerevisiaeBiogenesis of multivesicular bodiesUbiquitinated membrane proteinsMembrane trafficking pathwaysYeast Saccharomyces cerevisiaeESCRT-III polymerizationFormation of multivesicular bodiesIdeal model organismESCRT functionESCRT-IIISaccharomyces cerevisiaeTrafficking pathwaysModel organismsBiochemical approachesEndocytosis assayMembrane proteinsESCRTIn vitro approachesBiochemical analysisModel cargoBiogenesisEndosomesOrganellesTrafficking
2014
Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms
Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang H, Saito H. Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms. Science Signaling 2014, 7: ra21. PMID: 24570489, DOI: 10.1126/scisignal.2004780.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingCytoskeletonIntracellular Signaling Peptides and ProteinsMAP Kinase Kinase KinasesMAP Kinase Signaling SystemMembrane ProteinsMitogen-Activated Protein KinasesOsmotic PressureProtein BindingProtein Serine-Threonine KinasesProtein Structure, TertiarySaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsActivation of Hog1Hog1 MAPK cascadeActin cytoskeletonMAPK cascadeCytoplasmic domainMitogen-activated protein kinase Hog1Activation of Ste11Protein kinase Hog1Scaffold protein Bem1Yeast Saccharomyces cerevisiaeOsmoadaptive responsePXXP motifSH3 domainMsb2Saccharomyces cerevisiaeHKR1Osmotic stressSte20Hog1Bem1Sho1Signaling mechanismHigh osmolarityDifferential regulationCytoskeleton
2012
Proteome-wide Analysis of Lysine Acetylation Suggests its Broad Regulatory Scope in Saccharomyces cerevisiae *
Henriksen P, Wagner SA, Weinert BT, Sharma S, Bačinskaja G, Rehman M, Juffer AH, Walther TC, Lisby M, Choudhary C. Proteome-wide Analysis of Lysine Acetylation Suggests its Broad Regulatory Scope in Saccharomyces cerevisiae *. Molecular & Cellular Proteomics 2012, 11: 1510-1522. PMID: 22865919, PMCID: PMC3494197, DOI: 10.1074/mcp.m112.017251.Peer-Reviewed Original ResearchConceptsAcetylation sitesLysine acetylationS. cerevisiaeUnicellular eukaryotic model organismBudding yeast Saccharomyces cerevisiaeRegulatory roleBroader regulatory scopeProtein synthesisEukaryotic model organismYeast Saccharomyces cerevisiaePost-translational modificationsLysine acetylation sitesImportant regulatory roleChromatin organizationLysine acetyltransferasesModel organismsWide analysisPutative substratesRegulatory domainCritical regulatory domainsHistone H2BAcetylated proteinsProtein foldingSaccharomyces cerevisiaeBioinformatics analysis
2007
Identification of Yeast IQGAP (Iqg1p) as an Anaphase-Promoting-Complex Substrate and Its Role in Actomyosin-Ring-Independent Cytokinesis
Ko N, Nishihama R, Tully GH, Ostapenko D, Solomon MJ, Morgan DO, Pringle JR. Identification of Yeast IQGAP (Iqg1p) as an Anaphase-Promoting-Complex Substrate and Its Role in Actomyosin-Ring-Independent Cytokinesis. Molecular Biology Of The Cell 2007, 18: 5139-5153. PMID: 17942599, PMCID: PMC2096582, DOI: 10.1091/mbc.e07-05-0509.Peer-Reviewed Original ResearchMeSH KeywordsActomyosinAmino Acid MotifsAnaphase-Promoting Complex-CyclosomeCytokinesisGene Expression Regulation, FungalMicrotubule-Associated ProteinsMutationMyosin Heavy ChainsPhenotypeProtein Bindingras GTPase-Activating ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSubstrate SpecificityUbiquitinUbiquitin-Protein Ligase ComplexesConceptsActomyosin ringAPC/C mutantsAPC/C functionSeptin-dependent mannerAnaphase-promoting complexYeast Saccharomyces cerevisiaeOnset of cytokinesisDeletion of genesBud neckMitotic exitAPC/Mitotic cyclinsSaccharomyces cerevisiaeSeptum formationIqg1pCytokinesisNovel recognition sequenceC mutantsNonessential componentsSame phenotypeRecognition sequenceLate G1Rich mediumStrain backgroundComplex substratesDivergence of Transcription Factor Binding Sites Across Related Yeast Species
Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J, Seringhaus MR, Wang LY, Gerstein M, Snyder M. Divergence of Transcription Factor Binding Sites Across Related Yeast Species. Science 2007, 317: 815-819. PMID: 17690298, DOI: 10.1126/science.1140748.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesCandida albicansChromatin ImmunoprecipitationDNA-Binding ProteinsEvolution, MolecularFungal ProteinsGene Expression Regulation, FungalGene Regulatory NetworksGenes, FungalOligonucleotide Array Sequence AnalysisRegulatory Sequences, Nucleic AcidSaccharomycesSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription FactorsConceptsS. mikataeGene regulationS. bayanusRelated yeast speciesYeast Saccharomyces cerevisiaeTranscription factor bindingTranscription Factor Binding SitesDNA microarray analysisOrthologous genesChromatin immunoprecipitationRelated speciesPhenotypic diversityTranscription factorsFactor bindingSaccharomyces cerevisiaeS. cerevisiaeYeast speciesMolecular basisMicroarray analysisInterspecies variationSte12SpeciesBinding sitesCerevisiaeBayanus
2002
Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase
Grabińska K, Palamarczyk G. Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Research 2002, 2: 259-265. PMID: 12702274, DOI: 10.1016/s1567-1356(02)00110-1.Peer-Reviewed Original ResearchConceptsFarnesyl diphosphateDolichol biosynthesisMevalonate pathwayOverexpression of farnesyl diphosphate synthaseYeast Saccharomyces cerevisiaeAAA ATPase familyFarnesyl diphosphate synthaseDerivatives of mevalonic acidDiphosphate synthaseProtein glycosylationATPase familyIsoprenoid lipidsRegulatory enzymeMevalonic acidMevalonateRegulatory roleBiosynthesisDolicholYeastPathwayProteinEnzymeYta7FarnesylationTranscriptionDolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase
Grabińska K, Palamarczyk G. Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Research 2002, 2: 259-265. DOI: 10.1111/j.1567-1364.2002.tb00093.x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDolichol biosynthesisMevalonate pathwayYeast Saccharomyces cerevisiaeTranscription of genesAAA ATPase familyNon-sterol derivativesEffects of overexpressionATPase familyNon-sterol compoundsProtein glycosylationSaccharomyces cerevisiaeFirst enzymeIsoprenoid lipidsRegulatory enzymeRegulatory roleEffects of FPPBiosynthesisFarnesylCoA reductaseMevalonic acidPathwayEnzymeSynthaseFPPPresent review
1999
The Doa4 Deubiquitinating Enzyme Is Required for Ubiquitin Homeostasis in Yeast
Swaminathan S, Amerik A, Hochstrasser M. The Doa4 Deubiquitinating Enzyme Is Required for Ubiquitin Homeostasis in Yeast. Molecular Biology Of The Cell 1999, 10: 2583-2594. PMID: 10436014, PMCID: PMC25490, DOI: 10.1091/mbc.10.8.2583.Peer-Reviewed Original ResearchMeSH KeywordsCarrier ProteinsCytoskeletal ProteinsEndopeptidasesEndosomal Sorting Complexes Required for TransportFungal ProteinsHomeostasisMutationPeptide HydrolasesProteasome Endopeptidase ComplexSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsUbiquitin ThiolesteraseUbiquitinsVacuolesVesicular Transport ProteinsConceptsDeubiquitinating enzymeAttachment of ubiquitinUbiquitin-dependent proteolysisYeast Saccharomyces cerevisiaeWild-type cellsCell surface proteinsAdditional ubiquitinVacuolar proteolysisUbiquitinated substratesUbiquitin homeostasisCellular proteinsMembrane proteinsUbiquitinated intermediatesSaccharomyces cerevisiaeGenetic dataDoa4Loss of viabilityUbiquitin depletionUbiquitinProteolytic intermediatesProteasomeSurface proteinsUbiquitin degradationEventual degradationProtein
1998
Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking
Burd C, Babst M, Emr S. Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking. Seminars In Cell And Developmental Biology 1998, 9: 527-533. PMID: 9835640, DOI: 10.1006/scdb.1998.0255.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Protein Complex alpha SubunitsAdaptor Proteins, Vesicular TransportAlkaline PhosphataseBiological TransportCarboxypeptidasesCarrier ProteinsCathepsin ACell MembraneCoated Pits, Cell-MembraneFungal ProteinsIntracellular MembranesLysosomesMembrane ProteinsModels, BiologicalMonomeric Clathrin Assembly ProteinsPhosphatidylinositol 3-KinasesSaccharomyces cerevisiaeVacuolesConceptsSorting pathwaysVesicle docking/fusionAdaptor protein-3 complexProtein sorting signalsDocking/fusionPhosphorylation-dependent ubiquitinationVesicle coat proteinsYeast Saccharomyces cerevisiaeMembrane fusion reactionGolgi recyclingEndocytic cargoFYVE domainSorting signalsKinase regulationEukaryotic cellsImportant mechanistic insightsMembrane transport reactionsRecycling pathwaySaccharomyces cerevisiaeBiosynthetic pathwayCoat proteinRecognition motifMembrane coatMolecular mechanismsLysosomal traffickingAcidic Di-leucine Motif Essential for AP-3–dependent Sorting and Restriction of the Functional Specificity of the Vam3p Vacuolar t-SNARE
Darsow T, Burd C, Emr S. Acidic Di-leucine Motif Essential for AP-3–dependent Sorting and Restriction of the Functional Specificity of the Vam3p Vacuolar t-SNARE. Journal Of Cell Biology 1998, 142: 913-922. PMID: 9722605, PMCID: PMC2132875, DOI: 10.1083/jcb.142.4.913.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Vesicular TransportAlkaline PhosphataseBiological TransportCarboxypeptidasesCathepsin AEndosomesFungal ProteinsLeucineMembrane ProteinsMonomeric Clathrin Assembly ProteinsMutationNerve Tissue ProteinsPhosphoproteinsQa-SNARE ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSNARE ProteinsVesicle-Associated Membrane Protein 3Vesicular Transport ProteinsConceptsPre-vacuolar endosomesVacuolar proteinCarboxypeptidase Y pathwayDi-leucine sequenceOrganelle-specific functionsT-SNARE proteinsAP-3 functionAlkaline phosphatase pathwayYeast Saccharomyces cerevisiaeTransport of proteinsSNAP receptor (SNARE) proteinsT-SNAREsGenetic screenCPY pathwayLeucine signalDelivery of cargoPhosphatase pathwaysRegulated transportMammalian systemsPep12pVam3pSaccharomyces cerevisiaeAccessory proteinsAcid sequenceALP pathway
1997
Polyprenol formation in the yeast Saccharomyces cerevisiae: effect of farnesyl diphosphate synthase overexpression
Szkopińska A, Grabińska K, Delourme D, Karst F, Rytka J, Palamarczyk G. Polyprenol formation in the yeast Saccharomyces cerevisiae: effect of farnesyl diphosphate synthase overexpression. Journal Of Lipid Research 1997, 38: 962-968. PMID: 9186913, DOI: 10.1016/s0022-2275(20)37220-5.Peer-Reviewed Original ResearchConceptsWild-type yeastType yeastSaccharomyces cerevisiaeYeast Saccharomyces cerevisiaeEffects of farnesylSynthesis of dolicholSame genetic backgroundHand overexpressionErg mutantsFPP synthaseSqualene synthase activitySynthesis of polyprenolsExogenous FPPMevalonate pathwayMutantsGenetic backgroundYeastOverexpressionSynthase overexpressionSynthase activityCerevisiaeFarnesylGenesSynthasePolyprenols
1996
A misfolded form of 5S rRNA is complexed with the Ro and La autoantigens.
Shi H, O'Brien C, Van Horn D, Wolin S. A misfolded form of 5S rRNA is complexed with the Ro and La autoantigens. RNA 1996, 2: 769-84. PMID: 8752087, PMCID: PMC1369414.Peer-Reviewed Original ResearchConceptsRRNA precursorRo proteinAlternative helixQuality control pathwaysYeast Saccharomyces cerevisiaeSmall cytoplasmic RNAProtein-protein interactionsOligonucleotide-directed RNase H cleavageWild-type precursorRRNA biosynthesisY RNAsSecondary structure determinantsMutant RNAsSaccharomyces cerevisiaeLa proteinControl pathwaysCytoplasmic RNANuclease digestionInternal mutationsRRNARNAXenopus oocytesProteinSimilar sequencesRo autoantigen
1994
A novel role for DNA photolyase: binding to DNA damaged by drugs is associated with enhanced cytotoxicity in Saccharomyces cerevisiae.
Fox M, Feldman B, Chu G. A novel role for DNA photolyase: binding to DNA damaged by drugs is associated with enhanced cytotoxicity in Saccharomyces cerevisiae. Molecular And Cellular Biology 1994, 14: 8071-8077. PMID: 7969145, PMCID: PMC359345, DOI: 10.1128/mcb.14.12.8071.Peer-Reviewed Original ResearchMeSH Keywords4-Nitroquinoline-1-oxideCisplatinDeoxyribodipyrimidine Photo-LyaseDNA DamageDNA, FungalDNA-Binding ProteinsDose-Response Relationship, DrugEndodeoxyribonucleasesFungal ProteinsMechlorethamineMethylnitronitrosoguanidinePyrimidine DimersSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsBinding to DNADNA photolyaseYeast Saccharomyces cerevisiaeGenes increased sensitivityAlkylating agent N-methyl-N'-nitro-N-nitrosoguanidineInterfere with cell survivalRepair cyclobutane pyrimidine dimersSaccharomyces cerevisiaeAssociated with resistanceCyclobutane pyrimidine dimersNucleotide excision repair systemN-methyl-N'-nitro-N-nitrosoguanidineExcision repair systemCell survivalDNAPhotolyasePyrimidine dimersAIDS survivalAnticancer drug cis-diamminedichloroplatinumRepair systemCis-DDPYeastMutantsNucleotideMutationsA Novel Role for DNA Photolyase: Binding to DNA Damaged by Drugs Is Associated with Enhanced Cytotoxicity in Saccharomyces cerevisiae
Fox M, Feldman B, Chu G. A Novel Role for DNA Photolyase: Binding to DNA Damaged by Drugs Is Associated with Enhanced Cytotoxicity in Saccharomyces cerevisiae. Molecular And Cellular Biology 1994, 14: 8071-8077. DOI: 10.1128/mcb.14.12.8071-8077.1994.Peer-Reviewed Original ResearchBinding to DNADNA photolyaseYeast Saccharomyces cerevisiaeGenes increased sensitivityAlkylating agent N-methyl-N'-nitro-N-nitrosoguanidineInterfere with cell survivalRepair cyclobutane pyrimidine dimersSaccharomyces cerevisiaeAssociated with resistanceCyclobutane pyrimidine dimersNucleotide excision repair systemN-methyl-N'-nitro-N-nitrosoguanidineExcision repair systemCell survivalDNAPhotolyaseNovel rolePyrimidine dimersAIDS survivalAnticancer drug cis-diamminedichloroplatinumRepair systemAssociated with enhanced cytotoxicityCis-DDPYeastMutants
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply