2023
Phenotypic and proteomic characterization of the human erythroid progenitor continuum reveal dynamic changes in cell cycle and in metabolic pathways
Papoin J, Yan H, Leduc M, Le Gall M, Narla A, Palis J, Steiner L, Gallagher P, Hillyer C, Gautier E, Mohandas N, Blanc L. Phenotypic and proteomic characterization of the human erythroid progenitor continuum reveal dynamic changes in cell cycle and in metabolic pathways. American Journal Of Hematology 2023, 99: 99-112. PMID: 37929634, PMCID: PMC10877306, DOI: 10.1002/ajh.27145.Peer-Reviewed Original ResearchConceptsErythroid progenitor differentiationCell cycleErythroid progenitorsProgenitor differentiationMass spectrometry-based proteomicsFurther functional analysisSpectrometry-based proteomicsHuman erythroid progenitorsProtein machineryErythroid progenitor proliferationTerminal erythropoiesisProteomic characterizationHematopoietic stem cellsProteomic dataProgenitor populationsHuman erythropoiesisReticulocyte maturationFunctional analysisErythroid lineageOxidative phosphorylationProgenitor proliferationErythroid disordersMetabolic pathwaysAbsolute expressionStem cellsPhenotypic and Proteomic Characterization of the Human Erythroid Progenitor Continuum Reveal Dynamic Changes in Cell Cycle and in Metabolic Pathways
Papoin J, Yan H, Leduc M, le-Gall M, Narla A, Steiner L, Gallagher P, Hillyer C, Gauthier E, Narla M, Blanc L. Phenotypic and Proteomic Characterization of the Human Erythroid Progenitor Continuum Reveal Dynamic Changes in Cell Cycle and in Metabolic Pathways. Blood 2023, 142: 2455. DOI: 10.1182/blood-2023-189566.Peer-Reviewed Original ResearchCell cycleFaster cycling cellsProgenitor differentiationProgenitor populationsOxidative phosphorylationMass spectrometry-based proteomicsErythroid progenitorsS phaseProtein copy numbersSpectrometry-based proteomicsErythroid progenitor differentiationCycle-related genesG2/MTerminal erythropoiesisProgenitor biologyProteomic characterizationHematopoietic stem cellsE2F membersHuman erythropoiesisHuman bone marrowFunctional analysisErythroid lineageMurine erythropoiesisMetabolic pathwaysS transition
2022
Author Correction: Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies
Li Y, Xu C, Wang B, Xu F, Ma F, Qu Y, Jiang D, Li K, Feng J, Tian S, Wu X, Wang Y, Liu Y, Qin Z, Liu Y, Qin J, Song Q, Zhang X, Sujie A, Huang J, Liu T, Shen K, Zhao J, Hou Y, Ding C. Author Correction: Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies. Nature Communications 2022, 13: 6749. PMID: 36347856, PMCID: PMC9643381, DOI: 10.1038/s41467-022-34238-0.Peer-Reviewed Original ResearchProteomic characterization of post-mortem human brain tissue following ultracentrifugation-based subcellular fractionation
Kandigian SE, Ethier EC, Kitchen RR, Lam TT, Arnold SE, Carlyle BC. Proteomic characterization of post-mortem human brain tissue following ultracentrifugation-based subcellular fractionation. Brain Communications 2022, 4: fcac103. PMID: 35611312, PMCID: PMC9123841, DOI: 10.1093/braincomms/fcac103.Peer-Reviewed Original ResearchProteomic characterizationSubcellular fractionationTissue cell type compositionMultiple cellular organellesPost-mortem human brain tissueMajority of proteinsThousands of proteinsCell type compositionHuman brain tissueSame biological sampleSpatial proteomicsProtein functionProtein localizationOrganellar markersCellular organellesCellular localizationDrug targetsSubcellular levelOrganellesAbundant organellesCentrifugation fractionsProteinCell linesDisease mechanismsMembrane breakdown
2021
VectorMOD: Method for Bottom-Up Proteomic Characterization of rAAV Capsid Post-Translational Modifications and Vector Impurities
Rumachik NG, Malaker SA, Paulk NK. VectorMOD: Method for Bottom-Up Proteomic Characterization of rAAV Capsid Post-Translational Modifications and Vector Impurities. Frontiers In Immunology 2021, 12: 657795. PMID: 33868302, PMCID: PMC8047074, DOI: 10.3389/fimmu.2021.657795.Peer-Reviewed Original Research
2017
Human Pancreatic Acinar Cells Proteomic Characterization, Physiologic Responses, and Organellar Disorders in ex Vivo Pancreatitis
Lugea A, Waldron RT, Mareninova OA, Shalbueva N, Deng N, Su HY, Thomas DD, Jones EK, Messenger SW, Yang J, Hu C, Gukovsky I, Liu Z, Groblewski GE, Gukovskaya AS, Gorelick FS, Pandol SJ. Human Pancreatic Acinar Cells Proteomic Characterization, Physiologic Responses, and Organellar Disorders in ex Vivo Pancreatitis. American Journal Of Pathology 2017, 187: 2726-2743. PMID: 28935577, PMCID: PMC5718097, DOI: 10.1016/j.ajpath.2017.08.017.Peer-Reviewed Original ResearchConceptsOrganellar morphologyEndoplasmic reticulum stressProteomic characterizationEndolysosomal functionProteomic analysisMolecular mechanismsMitochondrial depolarizationTaurolithocholic acidPhysiological functionsMuscarinic acetylcholine receptor M3Acute pancreatitis patientsBile acid taurolithocholic acidMacrophage inhibitory factorReticulum stressDigestive enzymesMuscarinic agonist carbacholTumor necrosis factorPhysiological responsesSimilar pathological responsesAcinar preparationsAcinar cell responsesCell viabilityInflammatory mediatorsSimilar mechanismPancreatitis patients
2016
α-Amanitin Restrains Cancer Relapse from Drug-Tolerant Cell Subpopulations via TAF15
Kume K, Ikeda M, Miura S, Ito K, Sato KA, Ohmori Y, Endo F, Katagiri H, Ishida K, Ito C, Iwaya T, Nishizuka SS. α-Amanitin Restrains Cancer Relapse from Drug-Tolerant Cell Subpopulations via TAF15. Scientific Reports 2016, 6: 25895. PMID: 27181033, PMCID: PMC4867652, DOI: 10.1038/srep25895.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-AmanitinAnimalsCell Line, TumorCisplatinDown-RegulationDrug ResistanceEnzyme InhibitorsGene Expression Regulation, NeoplasticHCT116 CellsHeLa CellsHT29 CellsHumansMCF-7 CellsMicePeritoneal NeoplasmsProteomicsSecondary PreventionTATA-Binding Protein Associated FactorsTranscription, GeneticXenograft Model Antitumor AssaysConceptsΑ-amanitinRNA polymerase II inhibitorProtein expression patternsTranscriptional machineryRNA processingProteomic characterizationFunctional screeningTranscriptional levelExpression patternsTAF15II inhibitorsCancer cellsSubstantial frequencyDTC formationCancer relapseCell subpopulationsSubpopulationsTranscriptionMouse modelMachineryRNAPresence of drugsStemnessColoniesExpression
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply