2025
Multiple interactions recruit BLTP2 to ER-PM contacts to control plasma membrane dynamics
Dai A, Xu P, Amos C, Fujise K, Wu Y, Yang H, Eisen J, Guillén-Samander A, De Camilli P. Multiple interactions recruit BLTP2 to ER-PM contacts to control plasma membrane dynamics. Journal Of Cell Biology 2025, 224: e202504027. PMID: 40899996, PMCID: PMC12406788, DOI: 10.1083/jcb.202504027.Peer-Reviewed Original ResearchConceptsPlasma membraneTubular endosomesN-BAR domain proteinsER-PM contactsPlasma membrane dynamicsLipid transport functionLipid transfer proteinsDomain proteinsMembrane dynamicsN-BARLipid transportTransfer proteinCell typesEndosomesIntracellular vacuolesProteinTransport functionPM dynamicsMacropinosomesAdaptorMultiple interactionsLipidPhosphoinositideERVacuolesA quantitative ultrastructural timeline of nuclear autophagy reveals a role for dynamin-like protein 1 at the nuclear envelope
Mannino P, Perun A, Surovtsev I, Ader N, Shao L, Rodriguez E, Melia T, King M, Lusk C. A quantitative ultrastructural timeline of nuclear autophagy reveals a role for dynamin-like protein 1 at the nuclear envelope. Nature Cell Biology 2025, 27: 464-476. PMID: 39920277, PMCID: PMC11908896, DOI: 10.1038/s41556-025-01612-1.Peer-Reviewed Original ResearchConceptsInner nuclear membraneDynamin-like protein 1Membrane fissionNuclear envelopeMembrane fission stepNon-canonical rolesDouble-membrane vesiclesProtein 1Nuclear envelope remodelingLattice light-sheet microscopyFission stepDnm1Nuclear autophagyIntact nucleiPerinuclear spaceNuclear membraneAutophagic mechanismsNucleophagyCorrelative lightLight-sheet microscopyFissionElectron tomographyVesiclesVacuolesAtg11
2022
Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells
Chang SJ, Hsu YT, Chen Y, Lin YY, Lara-Tejero M, Galan JE. Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. ELife 2022, 11: e78561. PMID: 35579416, PMCID: PMC9142146, DOI: 10.7554/elife.78561.Peer-Reviewed Original ResearchConceptsCellular machineryType III protein secretion systemSpecific cellular machineryVesicle carriersProtein secretion systemExtracellular spaceTyphoid toxinEssential virulence factorExocytic transportGTPase Sar1Syntaxin 4Unusual biologySecretion systemPlasma membraneIntracellular transportRemarkable adaptationSpecific effectorsHost cellsIntracellular pathogensVirulence factorsMachineryCooptionVacuolesToxinSpecific environment
2019
Manipulation of Host Cell Organelles by Intracellular Pathogens
Omotade T, Roy C. Manipulation of Host Cell Organelles by Intracellular Pathogens. 2019, 179-196. DOI: 10.1128/9781683670261.ch13.Peer-Reviewed Original ResearchPathogen-containing vacuolesNascent phagosomesSpecialized organellesIntracellular pathogensHost cell organellesMembrane-bound compartmentsHost-pathogen interfaceMost microbesPhagosome maturationLysosomal degradationMembrane transportCell organellesOrganellesHost macrophagesPhagosomesMicrobesPathogensCompartmentsCoevolutionLysosomesVacuolesReplicationMaturationPhagocytosis
2015
Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine–uric acid transporter and an intrinsically misfolded polypeptide
Krypotou E, Scazzocchio C, Diallinas G. Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine–uric acid transporter and an intrinsically misfolded polypeptide. Fungal Genetics And Biology 2015, 75: 56-63. PMID: 25639910, DOI: 10.1016/j.fgb.2015.01.009.Peer-Reviewed Original ResearchConceptsNucleobase-ascorbate transporterUptake of purinesAcid transportAspergillus nidulansMisfolded polypeptidesER-retainedGFP tagMisfolded proteinsHeterologous expressionEvolutionary implicationsInactive proteinPutative transportersAspergillus brasiliensisFunctional characterizationTurned-overPlasma membranePeptide sequencesIn silicoProteinSubfamilyAspergillusTransport functionLow affinityHigher affinityVacuoles
2014
A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis
Wu Y, O'Toole ET, Girard M, Ritter B, Messa M, Liu X, McPherson PS, Ferguson SM, De Camilli P. A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis. ELife 2014, 3: e01621. PMID: 24963135, PMCID: PMC4107917, DOI: 10.7554/elife.01621.Peer-Reviewed Original ResearchConceptsClathrin-mediated endocytosisDynamin 1Bulk endosomesBulk endocytosisSynaptic vesiclesNew synaptic vesiclesClathrin-independent pathwaySynaptic vesicle recyclingSV membranesSV reformationDynamin 3Vesicle recyclingClathrinEndocytosisLarge endocytic vacuolesEndocytic vacuolesEndosomesPotent stimulationIntense synaptic activityVacuolesPathwaySynaptic activityMassive formationExocytosisBuds
2012
The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation
Choy A, Dancourt J, Mugo B, O’Connor T, Isberg RR, Melia TJ, Roy CR. The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation. Science 2012, 338: 1072-1076. PMID: 23112293, PMCID: PMC3682818, DOI: 10.1126/science.1227026.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAutophagyAutophagy-Related Protein 7Autophagy-Related Protein 8 FamilyAutophagy-Related ProteinsBacterial ProteinsCell Culture TechniquesCysteine ProteasesGene DeletionGlycineHEK293 CellsHost-Pathogen InteractionsHumansHydrolysisLegionella pneumophilaLegionnaires' DiseaseMicrofilament ProteinsPhagosomesUbiquitin-Activating EnzymesUbiquitin-Conjugating EnzymesConceptsATG8 proteinsIntracellular pathogen Legionella pneumophilaPathogen Legionella pneumophilaAdjacent aromatic residuesCarboxyl-terminal glycine residueAutophagosome membraneEukaryotic cellsAutophagy pathwayGlycine residueAromatic residuesIntracellular pathogensRavZAutophagyProteinLegionella pneumophilaSpecific mechanismsResiduesPathogensATG3MicrobesAtg7CytosolVacuolesPathwayPneumophilaThe Legionella pneumophila Effector DrrA Is Sufficient to Stimulate SNARE-Dependent Membrane Fusion
Arasaki K, Toomre DK, Roy CR. The Legionella pneumophila Effector DrrA Is Sufficient to Stimulate SNARE-Dependent Membrane Fusion. Cell Host & Microbe 2012, 11: 46-57. PMID: 22264512, PMCID: PMC3266541, DOI: 10.1016/j.chom.2011.11.009.Peer-Reviewed Original ResearchConceptsMembrane transport pathwaysEndoplasmic reticulumSyntaxin proteinsFusion of ERMembrane fusionSNARE-dependent membrane fusionBacterial pathogen Legionella pneumophilaPathogen-containing vacuolesSNARE protein Sec22bIntracellular bacterial pathogen Legionella pneumophilaPathogen Legionella pneumophilaFusion of vesiclesRab1 activationNoncanonical pairingTransport pathwaysRab1 GTPasePlasma membraneVesicle fusionOrganellesDrrASec22bVesiclesLegionella pneumophilaProteinVacuoles
2010
Apical Surface Expression of Aspartic Protease Plasmepsin 4, a Potential Transmission-blocking Target of the Plasmodium Ookinete*
Li F, Patra KP, Yowell CA, Dame JB, Chin K, Vinetz JM. Apical Surface Expression of Aspartic Protease Plasmepsin 4, a Potential Transmission-blocking Target of the Plasmodium Ookinete*. Journal Of Biological Chemistry 2010, 285: 8076-8083. PMID: 20056606, PMCID: PMC2832958, DOI: 10.1074/jbc.m109.063388.Peer-Reviewed Original ResearchConceptsPlasmepsin 4Midgut invasionAspartic proteasesDigestive vacuoleMidgut peritrophic matrixApical surface expressionChitin-binding proteinsMass spectrometry sequencingMalaria parasitesPeritrophic matrixPlasmodium invasionAspartic protease inhibitorsPlasmodium ookinetesParasite infectivityApical surfaceDefinitive hostsMechanistic roleAffinity columnBlood-stage PlasmodiumSurface expressionCalpain inhibitorsMidgut basal laminaProteinVaccine targetsVacuoles
2007
Legionella pneumophila proteins that regulate Rab1 membrane cycling
Ingmundson A, Delprato A, Lambright DG, Roy CR. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 2007, 450: 365-369. PMID: 17952054, DOI: 10.1038/nature06336.Peer-Reviewed Original ResearchConceptsDrrA proteinRab1 functionMembrane cyclingGTPase-activating protein activityIntracellular pathogen Legionella pneumophilaRecruitment of Rab1Pathogen-occupied vacuolesPathogen Legionella pneumophilaDistinct biochemical reactionsL. pneumophilaLegionella pneumophilaRab1 activityRab1 activationRab proteinsEukaryotic cellsExchange factorGTP hydrolysisProtein activityRab1Membrane functionBacterial replicationProteinBiochemical reactionsPneumophilaVacuoles
2006
Utilization of Endoplasmic Reticulum Membranes to Establish a Vacuole that Supports Replication of Legionella pneumophila
Stein M, Roy C. Utilization of Endoplasmic Reticulum Membranes to Establish a Vacuole that Supports Replication of Legionella pneumophila. 2006, 199-210. DOI: 10.1002/352760880x.ch11.Peer-Reviewed Original ResearchAutophagy machineryAutophagy mutantsHost autophagy machineryAutophagosome maturationMorphological differencesOther BacteriaLegionella replicationAutophagy formationEndoplasmic reticulum membraneReticulum membraneMutantsAutophagosomesMachineryAutophagyBiogenesisLegionella pneumophilaVacuolesBacteriaReplicationLCVMaturationLegionellaInduction
2004
Salmonella Modulates Vesicular Traffic by Altering Phosphoinositide Metabolism
Hernandez LD, Hueffer K, Wenk MR, Galán J. Salmonella Modulates Vesicular Traffic by Altering Phosphoinositide Metabolism. Science 2004, 304: 1805-1807. PMID: 15205533, DOI: 10.1126/science.1098188.Peer-Reviewed Original ResearchConceptsIntracellular replicative nicheType III secretion systemActin cytoskeleton rearrangementBacteria-containing vacuolesBacterial intracellular growthPhosphoinositide phosphataseInnate immune defenseSecretion systemReplicative nicheBacterial entryCytoskeleton rearrangementSpacious phagosomesHost cellsNonphagocytic cellsIntracellular growthImmune defenseSopBPhosphoinositide metabolismSignificant defectsSalmonella entericaVacuolesMembraneCellsNichePhagosomesSvp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors
Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH, Parker PJ, Lemmon MA. Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors. The EMBO Journal 2004, 23: 1922-1933. PMID: 15103325, PMCID: PMC404323, DOI: 10.1038/sj.emboj.7600203.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAutophagy-Related ProteinsBase SequenceCloning, MolecularEndosomesEscherichia coliGene ComponentsGenetic VectorsGreen Fluorescent ProteinsMembrane ProteinsMolecular Sequence DataPhosphatidylinositol PhosphatesPhosphotransferases (Alcohol Group Acceptor)PlasmidsProtein BindingProtein FoldingProtein TransportRhinovirusSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSequence Analysis, DNAVacuolesConceptsFamily of phosphatidylinositolSaccharomyces cerevisiae mutantsDrosophila homologueCerevisiae mutantsMembrane recyclingVesicle recyclingVacuole enlargementVacuole membraneMultivesicular bodiesRelated proteinsLysosomal compartmentMarker proteinsExquisite specificityEffectorsProteinPhosphatidylinositolVacuolesEukaryotesCellsMutantsLocalisesGolgiHomologuesMVBGenes
1998
The agent of Human Granulocytic Ehrlichiosis resides in an endosomal compartment.
Webster P, IJdo JW, Chicoine LM, Fikrig E. The agent of Human Granulocytic Ehrlichiosis resides in an endosomal compartment. Journal Of Clinical Investigation 1998, 101: 1932-1941. PMID: 9576758, PMCID: PMC508780, DOI: 10.1172/jci1544.Peer-Reviewed Original ResearchConceptsEndocytic pathwayLysosomal membrane glycoproteins lamp-1Membrane-bound compartmentsMannose-6-phosphate receptorInfected host cellsHL-60 cellsEndosomal compartmentsVacuole membraneLAMP-1Host cellsHGE bacteriaVacuolesTransferrin receptorColloidal gold particlesCompartmentsPathwayCytoplasmic vacuolesCellsAgent of HGEReceptorsOrganismsLow pHHuman granulocytic ehrlichiosisBacteriaHGE agent
1983
Acidification of macrophage and fibroblast endocytic vesicles in vitro.
Galloway C, Dean G, Marsh M, Rudnick G, Mellman I. Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proceedings Of The National Academy Of Sciences Of The United States Of America 1983, 80: 3334-3338. PMID: 6190176, PMCID: PMC394037, DOI: 10.1073/pnas.80.11.3334.Peer-Reviewed Original ResearchConceptsAcidic prelysosomal compartmentEndosome-lysosome fusionATP-dependent acidificationF0-ATPaseEndocytic vesiclesPrelysosomal compartmentAddition of ATPPrelysosomal vacuolesMitochondrial F1LysosomesEndosomesSecretory granulesCultured macrophagesN-ethylmaleimideInternal pHPercoll density gradientsAcidificationPH gradientFibroblastsCompartmentsOrganellesInhibitorsPermeant anionsFluorescein-dextranVacuoles
1967
Rhabdite formation in planaria: The role of microtubules
Lentz T. Rhabdite formation in planaria: The role of microtubules. Journal Of Ultrastructure Research 1967, 17: 114-126. PMID: 6017351, DOI: 10.1016/s0022-5320(67)80024-8.Peer-Reviewed Original ResearchConceptsGolgi apparatusRole of microtubulesCytoplasmic ribosomesCellular organellesGolgi vesiclesEndoplasmic reticulumGland cellsMicrotubulesMigration of vesiclesCells migrateEpidermal surfaceNeoblastsRough-surfaced endoplasmic reticulumGolgi sacculesVacuolesVesiclesPlanariaSecretory materialOpaque granulesRhabditesRibosomesOrganellesMesenchyme
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply