2024
Lysosomal defects in Grn loss of function modulate microglial cell state and immune responses
Tejwani L, Di Paolo G. Lysosomal defects in Grn loss of function modulate microglial cell state and immune responses. Alzheimer's & Dementia 2024, 20: e090872. PMCID: PMC11710039, DOI: 10.1002/alz.090872.Peer-Reviewed Original ResearchCell statesGRN deficiencyPutative transcription factorSingle-nucleus RNA sequencingPrimary lysosomal dysfunctionMyeloid cellsEncoding progranulinGenetic perturbationsExtracellular cuesLysosomal deacidificationLysosomal healthTranscription factorsPhagocytic cargoTranscriptional remodelingSingle-nucleusLysosomal stressLysosomal degradationLysosomal propertiesLysosomal defectsGRNLysosomal functionLysosomal clearanceWild-typeLysosomal degradation processImmune responseMethylarginine targeting chimeras for lysosomal degradation of intracellular proteins
Seabrook L, Franco C, Loy C, Osman J, Fredlender C, Zimak J, Campos M, Nguyen S, Watson R, Levine S, Khalil M, Sumigray K, Trader D, Albrecht L. Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins. Nature Chemical Biology 2024, 20: 1566-1576. PMID: 39414979, DOI: 10.1038/s41589-024-01741-y.Peer-Reviewed Original ResearchProtein arginine methyltransferasesTarget proteinsLoss-of-function phenotypesDegradation of intracellular proteinsUbiquitin-proteasome pathwayHistone deacetylase 6Bromodomain-containing protein 4Discovery of small moleculesTargeted Protein DegradationDegrade target proteinsTargeting chimerasArginine methylationArginine methyltransferasesProtein methylationPathogenic proteinsLysosomal deliveryLysosomal pathwayIntracellular proteinsLysosomal degradationHeterobifunctional small moleculesProtein degradationSmall-molecule degradersLysosomal proteolysisSubstrate degradationSmall molecules
2022
Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia
Wang L, Lin G, Zuo Z, Li Y, Byeon S, Pandey A, Bellen H. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Science Advances 2022, 8: eabn3326. PMID: 35857503, PMCID: PMC9278864, DOI: 10.1126/sciadv.abn3326.Peer-Reviewed Original Research
2019
Manipulation of Host Cell Organelles by Intracellular Pathogens
Omotade T, Roy C. Manipulation of Host Cell Organelles by Intracellular Pathogens. 2019, 179-196. DOI: 10.1128/9781683670261.ch13.Peer-Reviewed Original ResearchPathogen-containing vacuolesNascent phagosomesSpecialized organellesIntracellular pathogensHost cell organellesMembrane-bound compartmentsHost-pathogen interfaceMost microbesPhagosome maturationLysosomal degradationMembrane transportCell organellesOrganellesHost macrophagesPhagosomesMicrobesPathogensCompartmentsCoevolutionLysosomesVacuolesReplicationMaturationPhagocytosis
2018
Regulation of C-C chemokine receptor 5 (CCR5) stability by Lys197 and by transmembrane protein aptamers that target it for lysosomal degradation
Petti LM, Marlatt SA, Luo Y, Scheideman EH, Shelar A, DiMaio D. Regulation of C-C chemokine receptor 5 (CCR5) stability by Lys197 and by transmembrane protein aptamers that target it for lysosomal degradation. Journal Of Biological Chemistry 2018, 293: 8787-8801. PMID: 29678881, PMCID: PMC5995508, DOI: 10.1074/jbc.ra117.001067.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsC motif chemokine receptor 5Transmembrane helicesAmino acidsProtein aptamerFifth transmembrane helixUncharged amino acidsSpecific amino acidsProtein-coupled receptorsSubstitution of LysTraptamersReceptor stabilityLysosomal degradationHomologous positionsDiverse mechanismsChemokine receptor 5Initial characterizationNew therapeutic approachesHuman T cellsStable complexesCCR5 expressionCentral roleNew insightsChemokine receptorsHelix
2014
N-Glycosylation Determines the Abundance of the Transient Receptor Potential Channel TRPP2*
Hofherr A, Wagner C, Fedeles S, Somlo S, Köttgen M. N-Glycosylation Determines the Abundance of the Transient Receptor Potential Channel TRPP2*. Journal Of Biological Chemistry 2014, 289: 14854-14867. PMID: 24719335, PMCID: PMC4031537, DOI: 10.1074/jbc.m114.562264.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAsparagineBinding SitesBlotting, WesternCell LineCells, CulturedGlucosidasesGlycosylationHEK293 CellsHeLa CellsHumansIntracellular Signaling Peptides and ProteinsLysosomesMass SpectrometryMiceMice, KnockoutMicroscopy, FluorescenceMutationPolycystic Kidney, Autosomal DominantProtein Serine-Threonine KinasesProteolysisPyruvate Dehydrogenase Acetyl-Transferring KinaseConceptsGlucosidase IINon-catalytic β-subunitsProtein expressionFirst extracellular loopAutosomal dominant polycystic liver diseaseEfficient biogenesisGenetic interactionsMembrane proteinsBiochemical approachesN-glycosylationGenetic approachesTRPP2Glycosylation sitesBiological roleLysosomal degradationΒ-subunitChemical inhibitionBiogenesisExtracellular loopNonselective cation channelsIon channelsBiological importanceGlycosylationCation channelsProtein levels
2009
Autophagy and Innate Recognition Systems
Tal MC, Iwasaki A. Autophagy and Innate Recognition Systems. Current Topics In Microbiology And Immunology 2009, 335: 107-121. PMID: 19802562, DOI: 10.1007/978-3-642-00302-8_5.Peer-Reviewed Original ResearchConceptsAutophagic machineryInnate immune systemDouble-membrane structureViral replication complexProcess of autophagyImportant physiological processesInduction of autophagyInnate recognition systemsCellular homeostasisReplication complexPattern recognition receptorsAutophagy pathwayLysosomal degradationPhysiological processesCytosolic constituentsEfficient phagocytosisInnate pattern recognition receptorsRNA virusesAutophagyCytosolic sensorsKey moleculesExtracellular pathogensRecognition receptorsImmune systemViral sensors
2006
Chondroitin sulfate-modified LDL induces increased cholesteryl ester synthesis and down-regulation of LDL receptors in smooth muscle cells and macrophages
Tircol M, Tirziu D, Simionescu M. Chondroitin sulfate-modified LDL induces increased cholesteryl ester synthesis and down-regulation of LDL receptors in smooth muscle cells and macrophages. Open Life Sciences 2006, 1: 150-166. DOI: 10.2478/s11535-006-0010-x.Peer-Reviewed Original ResearchSmooth muscle cellsLipid accumulationMuscle cellsHuman aortic smooth muscle cellsCultured smooth muscle cellsAortic smooth muscle cellsGene expressionLysosomal degradationLDL receptorCellular degradationMatrix proteinsAcidic compartmentsCellular uptakeLysosomal compartmentCell typesFluorescence microscopyLDL inducesUndegraded formCholesterol ester synthesisRT-PCRCholesteryl ester synthesisNative LDLAccumulationRegulationRegulation of LDL
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply