2023
Comparative Genomics of Bacillus subtilis Phages Related to phiNIT1 from Desert Soils of the Southwest United States
Vill A, Delesalle V, Magness L, Chaudhry B, Lichty K, Strine M, Guffey A, DeCurzio J, Krukonis G. Comparative Genomics of Bacillus subtilis Phages Related to phiNIT1 from Desert Soils of the Southwest United States. PHAGE 2023, 4: 173-180. PMID: 40134794, PMCID: PMC11932518, DOI: 10.1089/phage.2023.0027.Peer-Reviewed Original ResearchGenomic structureBacillus phagesBacillus subtilis phageGram-positive bacteriumPathogenic Bacillus speciesDiverse genomesIntergenic regionSequence similarityGenetic diversityRepeat sequencesProtein familyRepresentative phagesPhageB. subtilisBacillus subtilisHost rangeBacillus speciesGenomeVirion structureCapsid structureDesert soilsTail lengthSequenceMyovirusesLysis assay
2019
Mutations of the Bacillus subtilis YidC1 (SpoIIIJ) insertase alleviate stress associated with σM-dependent membrane protein overproduction
Zhao H, Sachla A, Helmann J. Mutations of the Bacillus subtilis YidC1 (SpoIIIJ) insertase alleviate stress associated with σM-dependent membrane protein overproduction. PLOS Genetics 2019, 15: e1008263. PMID: 31626625, PMCID: PMC6827917, DOI: 10.1371/journal.pgen.1008263.Peer-Reviewed Original ResearchConceptsCell wall synthesisWall synthesisHydrophilic grooveMembrane protein insertaseMembrane protein overproductionIntegral membrane proteinsDNA damage responseSingle amino acid substitutionAmino acid substitutionsProtein translocaseSecretion stressFitness defectsOxidative stressDamage responseMembrane proteinsProtein overproductionRegulon inductionCell wallRegulonAcid substitutionsB. subtilisBacillus subtilisFunction mutationsCell deathCell growth
2016
The Listeria monocytogenes Fur‐regulated virulence protein FrvA is an Fe(II) efflux P1B4‐type ATPase
Pi H, Patel S, Argüello J, Helmann J. The Listeria monocytogenes Fur‐regulated virulence protein FrvA is an Fe(II) efflux P1B4‐type ATPase. Molecular Microbiology 2016, 100: 1066-1079. PMID: 26946370, PMCID: PMC4914386, DOI: 10.1111/mmi.13368.Peer-Reviewed Original Research
2015
Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis
Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis. Genes & Development 2015, 29: 451-464. PMID: 25691471, PMCID: PMC4335299, DOI: 10.1101/gad.254714.114.Peer-Reviewed Original ResearchConceptsGlutamine synthetaseFeedback-inhibited glutamine synthetaseMolecular mechanismsDimeric DNA-binding proteinsNitrogen homeostasisDNA-binding proteinsSuch regulatory pathwaysDetailed molecular mechanismsNovel molecular mechanismGram-positive bacterium B. subtilisRegulatory machineryTranscription regulatorsMolecular dissectionBacterium B. subtilisNutrient availabilityRegulatory pathwaysNitrogen depletionMetabolic reprogramingTnrAC-terminalB. subtilisBacillus subtilisNew structural familyNitrogen excessStructural family
2010
Ecology of Speciation in the Genus Bacillus
Connor N, Sikorski J, Rooney A, Kopac S, Koeppel A, Burger A, Cole S, Perry E, Krizanc D, Field N, Slaton M, Cohan F. Ecology of Speciation in the Genus Bacillus. Applied And Environmental Microbiology 2010, 76: 1349-1358. PMID: 20048064, PMCID: PMC2832372, DOI: 10.1128/aem.01988-09.Peer-Reviewed Original ResearchConceptsEcotype SimulationSoil textureEvolutionary historyEcology of speciationClade's evolutionary historyB. subtilisDNA sequence diversityPutative ecotypesEcological divergenceDivergent lineagesMicrobial ecologistsEcological changesEcological diversityEcological differencesEcological dimensionsEcotype differencesSequence diversityTemperature adaptationGenus BacillusSolar exposureCladeEcotypesEnvironmental parametersBacterial populationsTaxa
1997
Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
Curnow A, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin T, Söll D. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 11819-11826. PMID: 9342321, PMCID: PMC23611, DOI: 10.1073/pnas.94.22.11819.Peer-Reviewed Original ResearchConceptsTranscriptional unitsGln-tRNAGlnGram-positive eubacteriaHeterotrimeric enzymeGlu-tRNAGlnTranslational apparatusHeterotrimeric proteinGlutamine codonB. subtilisAmidotransferaseSynthetase activityOnly pathwayEnzymeGlutamylEssential componentArchaeaTransamidationEubacteriaOperonCyanobacteriaGATCOrganellesCodonGenesGATA
1996
Identification and characterization of pbpC, the gene encoding Bacillus subtilis penicillin-binding protein 3
Murray T, Popham D, Setlow P. Identification and characterization of pbpC, the gene encoding Bacillus subtilis penicillin-binding protein 3. Journal Of Bacteriology 1996, 178: 6001-6005. PMID: 8830698, PMCID: PMC178458, DOI: 10.1128/jb.178.20.6001-6005.1996.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacillus subtilisBacterial ProteinsBase SequenceCarrier ProteinsCell DivisionGene ExpressionGenes, BacterialHexosyltransferasesMolecular Sequence DataMultienzyme ComplexesMuramoylpentapeptide CarboxypeptidaseMutagenesisPenicillin-Binding ProteinsPeptidyl TransferasesRecombinant Fusion ProteinsRestriction MappingSpecies SpecificitySpores, BacterialTranscription, GeneticConceptsSignificant sequence similarityVegetative cell wallTranscriptional fusionsRedundant functionsDouble mutantLog-phase growthSequence similaritySequencing projectsPenicillin-binding protein 3Peptidoglycan structureSpore cortexCell wallB. subtilisBacillus subtilisGenesMajor promoterSpore germinationWeight PBPsSporulationCell morphologyFurther upstreamProtein 3GerminationSpore heat resistanceSubtilis
1989
δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA
O'Neill G, Chen M, Söll D. δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 60: 255-259. DOI: 10.1111/j.1574-6968.1989.tb03482.x.Peer-Reviewed Original ResearchΔ‐Aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaAcid biosynthesisCell-free extractsCell extractsΔ-aminolevulinic acidBiosynthetic activitySubtilisColiGabaculinAbstract Cell-free extractsAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteriadelta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA.
O'Neill G, Chen M, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 51: 255-9. PMID: 2511063, DOI: 10.1016/0378-1097(89)90406-0.Peer-Reviewed Original ResearchConceptsDelta-aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaGlutamyl-tRNAAcid biosynthesisCell-free extractsCell extractsBiosynthetic activitySubtilisDelta-aminolevulinic acidColiGabaculinAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteria
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply