2025
FapR regulates HssRS-mediated heme homeostasis in Bacillus anthracis
Pi H, Burroughs O, Carlin S, Beavers W, Hillebrand G, Krystofiak E, Stauff D, Skaar E. FapR regulates HssRS-mediated heme homeostasis in Bacillus anthracis. MBio 2025, 16: e02057-24. PMID: 40407322, PMCID: PMC12153329, DOI: 10.1128/mbio.02057-24.Peer-Reviewed Original ResearchConceptsHeme homeostasisKnowledge of bacterial physiologyTwo-component signaling systemRegulation of fatty acid biosynthesisMembrane integrityFatty acid biosynthesisHeme toxicityCausative agent of anthraxHeme stressGram-positive pathogensAgent of anthraxGram-positive bacteriaBacterial physiologyHeme sensingTranscriptional regulationAcid biosynthesisTranscription factorsFapRFacultative anaerobesHeme biosynthesisRegulatory pathwaysHssRSVertebrate bloodMolecular adaptationsMolecular mechanisms
2022
Loss of PBRM1 alters promoter histone modifications and activates ALDH1A1 to drive renal cell carcinomaPBRM1 loss increases H3K4me3 marks and expression of ALDH1A1
Schoenfeld D, Zhou R, Zairis S, Su W, Steinbach N, Mathur D, Bansal A, Zachem A, Tavarez B, Hasson D, Bernstein E, Rabadan R, Parsons R. Loss of PBRM1 alters promoter histone modifications and activates ALDH1A1 to drive renal cell carcinomaPBRM1 loss increases H3K4me3 marks and expression of ALDH1A1. Molecular Cancer Research 2022, 20: 1193-1207. PMID: 35412614, PMCID: PMC9357026, DOI: 10.1158/1541-7786.mcr-21-1039.Peer-Reviewed Original ResearchConceptsRetinoic acid biosynthesisSuch target genesPromoter histone modificationsAcid biosynthesisHistone modificationsClear cell renal cell carcinomaTarget genesLoss of PBRM1SWI/SNF complexSWI/SNF chromatinSWI/SNF subunitsHistone modification ChIP-seqSWI/SNF componentsATAC-seq dataCcRCC cell linesDe novo gainPBAF subunitsH3K4me3 peaksH3K4me3 marksPBAF complexSNF complexEpigenomic approachesChIP-seqRNA-seqHigh mutation frequency
2021
Escherichia coli-Derived γ‑Lactams and Structurally Related Metabolites Are Produced at the Intersection of Colibactin and Fatty Acid Biosynthesis
Kim CS, Turocy T, Moon G, Shine EE, Crawford JM. Escherichia coli-Derived γ‑Lactams and Structurally Related Metabolites Are Produced at the Intersection of Colibactin and Fatty Acid Biosynthesis. Organic Letters 2021, 23: 6895-6899. PMID: 34406772, PMCID: PMC10577019, DOI: 10.1021/acs.orglett.1c02461.Peer-Reviewed Original ResearchConceptsFatty acid biosynthesisAcid biosynthesisHybrid polyketide-nonribosomal peptideNuclear magnetic resonance spectroscopyΓ-lactam derivativesUnknown biological activityBiosynthetic logicMagnetic resonance spectroscopyCancer initiationColorectal cancer initiationStereochemical analysisΓ-lactamsColibactinResonance spectroscopyDiverse collectionBiosynthesisBiological activityAbundant metabolitesPathwayRelated metabolitesRelated structuresMetabolitesLociProteinSpectroscopyTranscriptome and Literature Mining Highlight the Differential Expression of ERLIN1 in Immune Cells during Sepsis
Huang S, Toufiq M, Saraiva L, Van Panhuys N, Chaussabel D, Garand M. Transcriptome and Literature Mining Highlight the Differential Expression of ERLIN1 in Immune Cells during Sepsis. Biology 2021, 10: 755. PMID: 34439987, PMCID: PMC8389572, DOI: 10.3390/biology10080755.Peer-Reviewed Original ResearchImmune cellsFatty acid biosynthesisWhole blood of healthy volunteersBlood of healthy volunteersMembrane protein componentsBlood cell subsetsWhole blood neutrophilsWhole bloodIn vitro expressionAcid biosynthesisHost immune systemHL60 cell lineER functionTranscriptomic datasetsCombination of lipopolysaccharideERLIN1Sepsis literatureSeptic stimulationCellular perturbationsCell subsetsProtein componentsHealthy volunteersDifferential expressionSepsisSeptic conditions
2018
Function and maturation of the Fe–S center in dihydroxyacid dehydratase from Arabidopsis
Gao H, Azam T, Randeniya S, Couturier J, Rouhier N, Johnson M. Function and maturation of the Fe–S center in dihydroxyacid dehydratase from Arabidopsis. Journal Of Biological Chemistry 2018, 293: 4422-4433. PMID: 29425096, PMCID: PMC5868250, DOI: 10.1074/jbc.ra117.001592.Peer-Reviewed Original ResearchConceptsDihydroxyacid dehydrataseBranched-chain amino acid biosynthesisArabidopsis thaliana</i>Amino acid biosynthesisCombination of UV-visible absorptionFe-S clustersMechanism of catalysisCluster biogenesisAcid biosynthesisCluster donorProductive bindingCharacterized examplesReconstitution reactionArabidopsisOxygen-labileDihydroxyacidBiogenesisDehydrataseEnzymeFe centerCluster transferCatalytic rolePlantsNFU2Resonance Raman and electron paramagnetic resonance
2016
What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang YF, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento AL, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA, Yang XF, Zhang JJ, Vinetz JM. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLOS Neglected Tropical Diseases 2016, 10: e0004403. PMID: 26890609, PMCID: PMC4758666, DOI: 10.1371/journal.pntd.0004403.Peer-Reviewed Original ResearchConceptsGenes/gene familiesProtein secretion systemComparative genomic analysisSignal peptide motifsCRISPR/Cas systemComputational biology analysisMammalian host adaptationBacterial pathogensWhole-genome analysisSialic acid biosynthesisLeptospira speciesEvolutionary relatednessSaprophytic Leptospira speciesGene familyMetabolic reconstructionGenomic comparisonSecretion motifBacterial virulence factorsHost adaptationSecretion systemGenome analysisAcid biosynthesisGenomic analysisNew insightsMammalian hosts
2015
GLP‐2 reprograms glucose metabolism in intestinal stem cells
Shi X, Alves T, Zeng X, Kibbey R, Estes M, Guan X. GLP‐2 reprograms glucose metabolism in intestinal stem cells. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.851.4.Peer-Reviewed Original ResearchMetabolic reprogrammingIntestinal stem cellsCell proliferationMetabolic fluxStem cellsAmino acid biosynthesisGlycolysis-dependent mannerDe novo biosynthesisPyruvate kinase M2Reprograms glucose metabolismIntracellular metabolic fluxesCellular functionsAcid biosynthesisCrypt stem cellsNovo biosynthesisReprogrammingNovel roleKinase M2Aerobic glycolysisBiosynthesisGLP-2Intestinal crypt cell proliferationNuclear translocationCellular mechanismsGlycolytic intermediates
2008
Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin
López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S, Raghay K, Rodríguez-Cuenca S, Deoliveira RM, Castañeda T, Datta R, Dong JZ, Culler M, Sleeman MW, Álvarez C, Gallego R, Lelliott CJ, Carling D, Tschöp MH, Diéguez C, Vidal-Puig A. Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin. Cell Metabolism 2008, 7: 389-399. PMID: 18460330, DOI: 10.1016/j.cmet.2008.03.006.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein Kinase KinasesAnimalsBlotting, WesternCarnitine O-Palmitoyltransferasefas ReceptorFastingFatty Acid SynthasesFatty AcidsFeeding BehaviorGhrelinHypothalamusIn Situ HybridizationLeptinMaleMalonyl Coenzyme AMiceMice, Inbred C57BLMice, KnockoutMice, ObesePhosphorylationProtein KinasesRatsRats, Sprague-DawleyConceptsHypothalamic fatty acid metabolismFatty acid metabolismFatty acid synthaseAcid metabolismCarnitine palmitoyltransferase 1 activityFatty acid biosynthesisRegion-specific mannerGhrelin's effectsOrexigenic responseHypothalamic levelOrexigenic actionVentromedial nucleusFood intakeCurrent evidenceFAS expressionGhrelinAcid biosynthesisRelevant regulatory systemGenetic approachesProtein kinaseAMPK activityAcid synthaseSpecific inhibitionRegulatory systemPhysiological mechanisms
2000
Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis
Cavalieri D, Townsend J, Hartl D. Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12369-12374. PMID: 11035792, PMCID: PMC17348, DOI: 10.1073/pnas.210395297.Peer-Reviewed Original ResearchConceptsDNA microarray analysisGene expressionNatural populationsSaccharomyces cerevisiaeMicroarray analysisGenome-wide transcriptional profilingAmino acid permeasesAmino acid biosynthesisSuite of traitsGlobal expression analysisSmooth colony phenotypeExtent of heterozygosityGlobal patternsVineyard isolateGene functionEvolutionary biologyNitrogen assimilationAcid biosynthesisSingle geneTranscriptional profilingUnlinked lociColony phenotypeHomothallic strainsS. cerevisiaeDiploid progenyGlucocorticoid Regulation of Fatty Acid Synthase in Fetal Lung
Rooney S. Glucocorticoid Regulation of Fatty Acid Synthase in Fetal Lung. Contemporary Endocrinology 2000, 91-104. DOI: 10.1007/978-1-59259-014-8_5.Peer-Reviewed Original Research
1999
An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: Role in tumor cell glycolysis and the Warburg effect
Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han J, Metz C, Bucala R. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: Role in tumor cell glycolysis and the Warburg effect. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 3047-3052. PMID: 10077634, PMCID: PMC15892, DOI: 10.1073/pnas.96.6.3047.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAllosteric RegulationAmino Acid SequenceBase SequenceCell DivisionCell Transformation, NeoplasticCloning, MolecularGene Expression Regulation, NeoplasticGlycolysisHumansMolecular Sequence DataNeoplasmsPhosphofructokinase-2Phosphotransferases (Alcohol Group Acceptor)RNA, MessengerSequence AlignmentTumor Cells, CulturedConceptsGene productsWarburg effectAU-rich instability elementsMRNA instability motifsInducible gene productsTissue-specific isoformsImportant control pointPentose phosphate pathwayNucleic acid biosynthesisHigh glycolytic rateAcid biosynthesisInducible genesInstability motifsTumor cell glycolysisAllosteric regulatorsPhosphate pathwayPFK-2Tumor cell growthInstability elementMultiple copiesCell growthCancer cell linesEnhanced glycolysisCell glycolysisHuman cancer cell lines
1989
δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA
O'Neill G, Chen M, Söll D. δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 60: 255-259. DOI: 10.1111/j.1574-6968.1989.tb03482.x.Peer-Reviewed Original ResearchΔ‐Aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaAcid biosynthesisCell-free extractsCell extractsΔ-aminolevulinic acidBiosynthetic activitySubtilisColiGabaculinAbstract Cell-free extractsAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteriadelta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA.
O'Neill G, Chen M, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 51: 255-9. PMID: 2511063, DOI: 10.1016/0378-1097(89)90406-0.Peer-Reviewed Original ResearchConceptsDelta-aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaGlutamyl-tRNAAcid biosynthesisCell-free extractsCell extractsBiosynthetic activitySubtilisDelta-aminolevulinic acidColiGabaculinAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteria
1971
Enzymatic Modification of Transfer RNA
Söll D. Enzymatic Modification of Transfer RNA. Science 1971, 173: 293-299. PMID: 4934576, DOI: 10.1126/science.173.3994.293.Peer-Reviewed Original ResearchConceptsTRNA-modifying enzymesTRNA moleculesTRNA genesTransfer RNAAmino acid biosynthesisParticular tRNA speciesNucleic acid-protein interactionsAminoacyl-tRNA synthetaseSimple selection procedureAmino acid acceptorPrecursor tRNAsActive tRNAMature tRNACellular processesTRNA speciesRegulatory mutantsAcid biosynthesisRNA precursorsProtein factorsIsoacceptor tRNAsDifferent amino acidsNucleotide sequencePolynucleotide levelBiological functionsTRNA
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply