2011
The GroEL/GroES Chaperonin Machine
Horwich A, Saibil H. The GroEL/GroES Chaperonin Machine. 2011, 191-207. DOI: 10.1017/cbo9781139003704.012.Peer-Reviewed Original ResearchChaperonin machinePhage infectionKingdoms of lifeATP-dependent proteinEukaryotic organellesBacterial operonsGroE operonMutant cellsDouble-ring architectureProtein foldingCellular metabolismRing assemblyPhage headOperonIdentical subunitsNative stateBroader roleProteinE. coliGenetic deficiencyBiological actionsParticle assemblyAssemblyEubacteriaGroES
2007
The structural basis of cyclic diguanylate signal transduction by PilZ domains
Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta‐Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF. The structural basis of cyclic diguanylate signal transduction by PilZ domains. The EMBO Journal 2007, 26: 5153-5166. PMID: 18034161, PMCID: PMC2140105, DOI: 10.1038/sj.emboj.7601918.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBacterial ProteinsBinding SitesCrystallography, X-RayCyclic GMPHumansMiceModels, MolecularMolecular ConformationMolecular Sequence DataPhylogenyProtein BindingProtein Structure, QuaternaryProtein Structure, SecondaryProtein Structure, TertiarySequence AlignmentSequence Homology, Amino AcidSignal TransductionVibrio choleraeConceptsPilZ domain-containing proteinsPilZ domainDomain-containing proteinsN-terminal domainConformational switchSecond messenger cyclic diguanylateBeta-barrel foldN-terminal loopEvolutionary diversificationCyclic diguanylateSignal transductionBioinformatics analysisStructural basisInteraction surfaceSessile growthEffector pathwaysVibrio choleraeProteinV. choleraeGMPCholeraeDomainClose appositionDiguanylateEubacteriaThe Structures of Antibiotics Bound to the E Site Region of the 50 S Ribosomal Subunit of Haloarcula marismortui: 13-Deoxytedanolide and Girodazole
Schroeder SJ, Blaha G, Tirado-Rives J, Steitz TA, Moore PB. The Structures of Antibiotics Bound to the E Site Region of the 50 S Ribosomal Subunit of Haloarcula marismortui: 13-Deoxytedanolide and Girodazole. Journal Of Molecular Biology 2007, 367: 1471-1479. PMID: 17321546, PMCID: PMC1925262, DOI: 10.1016/j.jmb.2007.01.081.Peer-Reviewed Original ResearchConceptsS ribosomal subunitEubacterial ribosomesEukaryotic ribosomesRibosomal subunitHaloarcula marismortuiE siteProtein synthesisSite regionProtein L28RibosomesConformational changesTRNAExtensive interactionsMarismortuiSubunitsStructure of antibioticsBindsSite componentsNew sitesArchaeaEubacteriaSitesL28Crystal structureL15
1997
Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
Curnow A, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin T, Söll D. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 11819-11826. PMID: 9342321, PMCID: PMC23611, DOI: 10.1073/pnas.94.22.11819.Peer-Reviewed Original ResearchConceptsTranscriptional unitsGln-tRNAGlnGram-positive eubacteriaHeterotrimeric enzymeGlu-tRNAGlnTranslational apparatusHeterotrimeric proteinGlutamine codonB. subtilisAmidotransferaseSynthetase activityOnly pathwayEnzymeGlutamylEssential componentArchaeaTransamidationEubacteriaOperonCyanobacteriaGATCOrganellesCodonGenesGATAGlutaminyl-tRNA synthetase.
Freist W, Gauss D, Ibba M, Söll D. Glutaminyl-tRNA synthetase. Biological Chemistry 1997, 378: 1103-17. PMID: 9372179.Peer-Reviewed Original ResearchConceptsE. coli GlnRSGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseMammalian enzymeCommon ancestorPositive eubacteriaCognate tRNAMultienzyme complexTRNA moleculesGlnRArtificial mutantsAcceptor stemAnticodon loopMolecular massAmino acidsCatalytic siteEnzymeSynthetaseEubacteriaArchaebacteriaTRNAMutantsOrganellesAncestorComplexes
1989
δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA
O'Neill G, Chen M, Söll D. δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 60: 255-259. DOI: 10.1111/j.1574-6968.1989.tb03482.x.Peer-Reviewed Original ResearchΔ‐Aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaAcid biosynthesisCell-free extractsCell extractsΔ-aminolevulinic acidBiosynthetic activitySubtilisColiGabaculinAbstract Cell-free extractsAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteriadelta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA.
O'Neill G, Chen M, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 51: 255-9. PMID: 2511063, DOI: 10.1016/0378-1097(89)90406-0.Peer-Reviewed Original ResearchConceptsDelta-aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaGlutamyl-tRNAAcid biosynthesisCell-free extractsCell extractsBiosynthetic activitySubtilisDelta-aminolevulinic acidColiGabaculinAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteria
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply